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Abstract

I develop a model of statistical arbitrage trading in an environment with “fat-tailed”
information. If risk-neutral arbitrageurs are uncertain about the variance of fat-tail
shocks and if they implement max-min robust optimization, they will choose to ignore
a wide range of pricing errors. Although model risk hinders their willingness to trade,
arbitrageurs can capture the most profitable opportunities because they follow a linear
momentum strategy beyond the inaction zone. This is equivalent to a machine-learning
algorithm called LASSO. Arbitrageurs can also amass market power due to conservative
trading under this strategy. Their uncoordinated exercise of robust control facilitates
tacit collusion, protecting their profits from being competed away even if their number
goes to infinity. In an extended model where an insider strategically interacts with
those arbitrageurs, the insider can induce them to trade too aggressively, giving herself
a reversal trading opportunity. Doing so distorts price informativeness and threatens
market stability.
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1 Introduction

In finance, extreme movements of asset prices occur much more frequently than predicted

by the tail probabilities of a Gaussian distribution. Such fat-tail events have caused many

problems, as exemplified by the failure of Long Term Capital Management. It is error-prone

to predict fat-tail events or to deal with their higher-order statistics. These difficulties give

rise to model risk1 and drive traders to implement robust control. Model risk is a prominent

concern for arbitrageurs whose activities are essential for market efficiency. Little is known

about how model risk affects arbitrage trading in a fat-tail environment. This topic is both

practically relevant and theoretically challenging. Answers to this question can provide new

insights into many topics in asset pricing, risk management, and market regulation.

The existence of various anomalies such as momentum suggests that financial markets

are not completely efficient2. Statistical arbitrage opportunities are also indicative of price

inefficiency, because arbitrageurs can make profits given only public information3. To study

statistical arbitrage trading, I introduce random fat-tail shocks to disrupt the efficient market

of a two-period Kyle (1985) economy. In the standard Kyle model setup, an informed trader

privately observes the stock liquidation value and trades sequentially to maximize her profits,

under the camouflage of noise traders and against competitive market makers. A Gaussian

information structure permits a unique linear equilibrium with an efficient linear pricing rule.

This paper models the stock value as a random realization drawn from the mixture of

Gaussian and Laplacian distributions, which have the same mean and variance. It is only

observed by an informed trader. The choice of a Laplacian distribution is empirically well-

grounded4. It has fat tails on both sides since its probability density decays exponentially.

This mixture setup allows the stock value to be fat-tailed with some probability. Market

makers believe that they live in the Gaussian world and also regard it as the common belief

among all agents. Market makers have the correct prior about the mean, variance, and

skewness, but incorrect beliefs about higher moments of the stock value distribution. With

Gaussian beliefs, they keep using a linear pricing rule5, which can result in estimation bias

if fat-tail shocks occur. This invites arbitrageurs to correct pricing errors. By assumption,

arbitrageurs are sophisticated enough to distinguish the distribution types (i.e., mispricing

1Model risk is the risk of loss when traders use the wrong model or deal with uncertain model parameters.
2As documented by Jegadeesh and Titman (1993), the momentum strategy could earn abnormal returns.
3See Lehmann (1990), Campbell, Lo, and MacKinlay (1997), Bondarenko (2003), Hogan, Jarrow, Teo,

and Warachka (2004), and Gatev, Goetzmann, and Rouwenhorst (2006) for discussions.
4The Laplace distribution can well characterize the distributions of stock returns sampled at different

time horizons. This is documented, for example, by Silva, Prange, and Yakovenko (2004).
5The empirical price impact function, which measures the average price change in response to the size of

an incoming order, is roughly linear with slight concavity. See Loeb (1983), Grinold and Kahn (2000) [p.
453], Gabaix, Gopikrishnan, Plerou, and Stanley (2006), and Kyle and Obizhaeva (2016).
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cases), but they face uncertainty about the dispersion of Laplace priors. For robust control,

arbitrageurs make trading decisions under the criterion of max-min expected utility6.

My main finding is that model risk can motivate risk-neutral arbitrageurs to implement a

machine-learning algorithm which mitigates their competition and ignores many mispricings.

This result contains three points that are discussed in greater details below.

First, arbitrageurs’ maximin robust strategy has a wide inaction zone: they start trading

only when the observed order flow exceeds three standard deviations of noise trading. Yet

this strategy is effective in catching the most profitable trades: arbitrageurs trade less than

2% of the time but can capture over 60% of the maximum profits they could earn in the

absence of model risk. Under this strategy, arbitrageurs choose to ignore small mispricings.

They focus on large events that involve little uncertainty about the trading direction. Ex post,

an econometrician may find a lot of mispricings that persist in this economy and question

arbitrageurs’ rationality or capacity. In fact, arbitrageurs are rational and risk-neutral in my

setting. They leave money on the table because of their aversion to uncertainty.

Second, this paper rationalizes a famous machine-learning method widely used in finance.

The above-mentioned robust strategy is operationally equivalent to a simple algorithm called

the Least Absolute Shrinkage and Selection Operator (LASSO)7. This is a powerful tool that

can select a few key factors from a large set of regression coefficients. The standard statistical

interpretation of LASSO involves a different mechanism, namely, the Maximum a Posteriori

estimate. This learning rule lacks Bayesian rationality because it uses the posterior mode as

point estimate, without summarizing all relevant information. In my setup, arbitrageurs are

Bayesian-rational when they decide to use LASSO: they evaluate all possible states using

Bayes’ rule and dynamically maximize a well-defined utility with sequential rationality.

Third, the maximin robust strategy supports tacit collusion and impairs market efficiency.

Arbitrageurs trade conservatively beyond the inaction zone. This enables them to accumulate

market power, which is most prominent near the kinks of their robust strategy. Therefore,

uncoordinated exercise of individual robust control facilitates tacit collusion among traders,

without any communication device or explicit agreement. Remarkably, even as the number

of arbitrageurs goes to infinity, their total profit does not vanish but converges to a finite

level. This non-competitive payoff is due to the “cartel” effect which hinders price efficiency.

6The theory of max-min expected utility is a standard treatment for ambiguity-averse preferences. It is
axiomatized by Gilboa and Schmeidler (1989), as a framework for robust decision making under uncertainty.
Related discussions can be found in Dow and Werlang (1992) and Hansen and Sargent (2001) for example.

7LASSO is a machine-learning technique developed by Tibshirani (1996) to improve prediction accuracy
and model interpretability. It is popular among algorithmic traders. This technique has recently been
employed in many financial studies, such as Huang and Shi (2011), Kozak, Nagel, and Santosh (2017),
Chinco, Clark-Joseph, and Ye (2017), and Freyberger, Neuhierl, and Weber (2017).
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Finally, I extend the model to allow for strategic interaction between the informed trader

and the group of arbitrageurs. The informed trader entices arbitrageurs to mimic past order

flows; arbitrageurs’ trend-following responses also tempt the informed trader to trick them:

she may first trade a large quantity to trigger those arbitrageurs and then unwind her position

against them. This strategy resembles several controversial schemes in reality. One example

is momentum ignition, a trading algorithm that attempts to trigger many other algorithmic

traders to run in the same direction so that the instigator can profit from trading against the

momentum she ignited. Another scheme is stop-loss hunting which attempts to force some

traders out of their positions by pushing the asset price to certain levels where they have set

stop-loss orders. In my setup, this sort of strategies can impair pricing accuracy, exaggerate

price volatility, and raise the average trading costs for common investors. Numerical results

also generate empirically testable patterns regarding price overreactions and volatility spikes.

Contributions to the literature. This paper investigates strategic arbitrage trading in an

uncertain fat-tail environment. This topic requires new methods and inspires fresh thinking.

Results discussed in this paper can contribute in multiple ways to the vast literature of asset

pricing, market microstructure, and behavioral finance.

First, this paper develops a new modeling framework for statistical arbitrage. The semi-

strong-form market efficiency holds in the standard Kyle (1985) model where traders have

common Gaussian beliefs about the economy. This simple assumption has been followed

by most subsequent studies8. The present paper deviates from the literature by introducing

fat-tail shocks to disrupt the Kyle equilibrium when market makers stick to Gaussian beliefs.

Unexpected changes in the underlying distribution cause mispricings in the market. This

gives room for arbitrageurs if they can foresee fat-tail shocks. Due to model risk, arbitrageurs

are uncertain about the extent of mispricings. If they simply follow the maximin criterion,

they may overemphasize the least favorable prior and become overly pessimistic in decision

making. This paper implements a rational procedure that prevents such biases. Similar to

the spirit of rational expectations, an internally consistent assumption is that arbitrageurs

inside this model have the correct belief on average about the model structure, despite their

uncertainty about some prior parameter. Recognizing this consistency, a rational arbitrageur

only considers those strategies that converge to the optimal strategy (as averaged across all

possible priors) and that preserve the convexity of their optimal strategy. Such constraints

make their admissible strategies comparable to the ideal rational-expectations strategy9.

8The literature includes Back (1992), Holden and Subrahmanyam (1992), Foster and Viswanathan (1994),
Foster and Viswanathan (1996), Vayanos (1999), Back, Cao, and Willard (2000), Vayanos (2001), Huddart,
Hughes, and Levine (2001), and Collin-Dufresne and Fos (2016), among many others.

9The rational-expectations strategy is the one that traders would use if they knew the true Laplace prior.
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Second, this paper is the first to study how market efficiency gets hindered by model risk

when arbitrageurs have fat-tail beliefs. This angle distinguishes the present paper from the

existing literature on limits to arbitrage10. Previous studies have suggested various important

frictions, including short-selling costs, leverage constraints, and wealth effects, which limit

arbitrageurs’ ability to eliminate mispricings. Excluding those frictions, the present paper

identifies another mechanism that can strongly affect the willingness of arbitrageurs to trade.

Specifically, model uncertainty of fat-tail priors make arbitrageurs hesitate to eradicate small

mispricings, because of ambiguity about the trading direction.

Third, this work sheds light on interesting topics at the interface of behavioral finance and

machine learning. This paper uses the max-min decision rule to rationalize the LASSO (“soft-

thresholding”) strategy, which was taken by Gabaix (2014) as a behavioral assumption of the

anchoring-and-adjustment mechanism. The LASSO algorithm has an inaction zone where

agents choose to ignore whatever happened, similar to the status quo bias11. The strategy of

arbitrageurs also resembles the behavior of feedback traders discussed in behavioral finance12.

In the eyes of an observer who has a Gaussian prior, arbitrageurs are “irrational” because

they show up randomly and all perform feedback trading based on historical prices. The

observer’s view is incorrect, given his misspecified prior in this economy.

This study can also help us to interpret empirical results about high-frequency traders

(HFTs)13. My primary model of statistical arbitrage can describe the situation where an

informed institutional investor executed large orders over time without anticipating that

HFTs detected her footprints to catch the momentum train; see Lewis (2014) for a historical

account. As an extension, I consider strategic interaction between an informed trader and

a group of arbitrageurs. This extended model can describe the situation where institutional

investors anticipate those HFTs and optimize their execution algorithms with strategic con-

siderations. My model is consistent with the empirical implications reported in van Kervel

and Menkveld (2017) on HFTs around institutional trading: (1)“HFTs appear to lean against

the wind when an order starts executing but if it executes more than seven hours, they seem

to reverse course and trade with wind.” (2)“Institutional orders appear mostly information-

motivated, in particular the ones with long-lasting executions that HFTs eventually trade

along with.” (3)“Investors are privately informed and optimally trade on their signal in full

awareness of HFTs preying on the footprint they leave in the market.”

10Gromb and Vayanos (2010) is an excellent survey on this subject. See also Shleifer and Vishny (1997),
Xiong (2001), Gabaix, Krishnamurthy, and Vigneron (2007), Kondor (2009), among others.

11See Kahneman, Knetsch, and Thaler (1991) and Samuelson and Zeckhauser (1988).
12For behavioral interpretations of feedback traders, see DeLong, Shleifer, Summers, and Waldmann

(1990), Barberis, Greenwood, Jin, and Shleifer (2015), and Barberis, Greenwood, Jin, and Shleifer (2018).
13For recent research on high-frequency trading, see Hendershott, Jones, and Menkveld (2011), van Kervel

and Menkveld (2017), Kirilenko, Kyle, Samadi, and Tuzun (2017), and Korajczyk and Murphy (2018).
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The extended model also contributes to the body of literature on market manipulations14.

In Allen and Gale (1992), a trade-based price manipulation is played by an uninformed

trader who attempts to trick other traders into believing the existence of informed trading.

In my model, the manipulative strategy is performed by an informed trader who trades in

an unexpected way to distort the learning of other traders. The informed trader may hide

her signal when it is strong and bluff when it is weak. In the linear equilibrium of Foster

and Viswanathan (1994), the better informed trader may also hide her information in early

periods and even trade against the direction of her superior signal. My analysis focuses on a

nonlinear equilibrium where the informed trader hides her information to reduce competitive

pressure from arbitrageurs. Several articles by Chakraborty and Yılmaz15 show that if market

makers face uncertainty about the existence of informed trades, then the informed trader

will bluff in every equilibrium by directly adding noise to other traders’ inference problem.

The disruptive strategy in my model is different because (1) it occurs under a set of specific

conditions, not state-by-state in every equilibrium; (2) it is a pure strategy that distorts

the learning of other traders, not a mixed strategy that adds some noise16; (3) it produces

bimodal distributions of prices, thereby magnifying both price volatility and trading costs.

Finally, the disruptive strategy in this paper shows that asset price “bubbles and crashes”

can take place in a strategic environment where speculators have fat-tail beliefs. Under good

enough liquidity conditions, a better-informed savvy trader may trade very aggressively to

trigger those speculators whose subsequent momentum responses can give this savvy trader a

reversal trading opportunity. This finding is related to the literature on market instability17.

The mechanism here shares some similarity with the model of Scheinkman and Xiong (2003)

where asset price bubbles reflect resale options due to traders’ overconfidence. In my setup,

speculators’ over-aggressive trading implicitly grants the informed trader a “resale option”

which could be exercised if condition permits. It is however worth remarking that traders in

my (extended) model share a common fat-tail prior, without any overconfidence bias.

The rest of this paper is organized as follows. Section 2 focuses on the primary model

where arbitrageurs exploit uncertain pricing errors in a robust manner. Section 3 studies the

extended model where a savvy informed trader anticipates and exploits those arbitrageurs.

Concluding remarks are made in Section 4. Major proofs are provided in Appendix A.

14See Allen and Gale (1992), Kumar and Seppi (1992), Jarrow (1992), van Bommel (2003), Huberman
and Stanzl (2004), Huddart et al. (2001), Khwaja and Mian (2005), Jiang, Mahoney, and Mei (2005);
Brunnermeier (2005), Brunnermeier and Pedersen (2005), Kyle and Viswanathan (2008), Goldstein and
Guembel (2008), Jarrow (2015), and Fox, Glosten, and Rauterberg (2018).

15See Chakraborty and Yılmaz (2004a), Chakraborty and Yılmaz (2004b), Chakraborty and Yılmaz (2008).
16Mixed strategies are studied in modified Kyle models by Huddart et al. (2001) and Yang and Zhu (2017).
17See Kyle and Xiong (2001), Abreu and Brunnermeier (2003), Hong and Stein (2003), and Scheinkman

and Xiong (2003), among others.
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2 Model of Robust Arbitrageurs

In this section, an equilibrium model is developed to study how arbitrageurs’ prior uncer-

tainty about mispricing shocks affects arbitrage strategy and market efficiency. This model

adds random fat-tail shocks to disturb the efficient market of a two-period Kyle (1985) model.

Table 1. The timeline and market participants in an economy of two auctions.
.
t = 0 t = 1 t = 2 t = 3

Informed Trader observe v submit x1 submit x2 receive πx

Noise Traders ... submit u1 submit u2 ...

Arbitrageurs observe s submit z1,n submit z2,n receive πz,n

Market Makers prior N (0, σ2
v) set p1 set p2 observe v

Structure and Notation. Consider the market in Table 1 with two rounds of trading, indexed

by t = 1, 2. The liquidation value of a risky asset, denoted ṽ, is either Gaussian or Laplacian:

ṽ = (1− s̃) · ṽG + s̃ · ṽL, where ṽG ∼ N (0, σ2
v), ṽL ∼ L(0, ξv), ξv ≡

σv√
2
. (1)

Here, s̃ takes the integer value 1 with probability α and takes the value 0 with probability

1 − α. The true Laplace scale parameter is set to be ξv = σv√
2

so that the variance of ṽ is

always σ2
v . The initial asset price is set as p0 = 0 without loss of generality. The quantities

traded by noise traders are Gaussian, denoted ũ1 ∼ N (0, σ2
u) and ũ2 ∼ N (0, γσ2

u). The noise

variances can be different, as tuned by the parameter γ > 0. All the random variables ṽ, s̃,

ũ1, and ũ2 are mutually independent. The parameters {σv, σu, γ} are common knowledge.

A risk-neutral informed trader privately observes ṽ at t = 0, submits market orders, x̃1

and x̃2, to buy or sell this asset before her private signal becomes public at t = 3. The

strategy is denoted by a vector of real-valued functions, X = 〈X1, X2〉. Prices and volumes

become public information right after the auctions take place. The information sets of

informed trader before trading at t = 1, 2 are I1,x = {ṽ} and I2,x = {ṽ, p̃1} where p̃1 is the

asset price at t = 1. It is justified to write x̃1 = X1(ṽ) and x̃2 = X2(ṽ, p̃1). The informed

trader’s total profit from both periods can be written as π̃x =
∑2

t=1(ṽ − p̃t)x̃t.
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A number of risk-neutral arbitrageurs (indexed by n = 1, ..., N) observe s̃, which encodes

the distribution type of ṽ. Each arbitrageur can place market orders, z̃1,n and z̃2,n, to exploit

potential market inefficiency. Their strategy profile is represented by a matrix of real-valued

functions, Z = [Z1, ...,ZN ] where Zn = 〈Z1,n, Z2,n〉 is the n-th arbitrageur’s strategy for

n = 1, ..., N . The information sets of arbitrageurs are I1,z = {s̃} and I2,z = {s̃, p̃1} before

their trading at t = 1, 2. The quantities traded by the n-th arbitrageur are z̃1,n = Z1,n(s̃)

and z̃2,n = Z2,n(s̃, p̃1). The total profit for the n-th trader is denoted π̃z,n =
∑2

t=1(ṽ− p̃t)z̃t,n.

Uninformed competitive market makers clear the market by setting prices at which they

strive to break even. Their pricing strategy is denoted by the vector of real-valued functions,

P = 〈P1, P2〉. The total order flow ỹt ≡ x̃t +
∑N

n=1 z̃t,n + ũt is observed by market makers

before they set the price p̃t at period t ∈ {1, 2}. We can write p̃1 = P1(ỹ1) and p̃2 = P2(ỹ1, ỹ2).

Belief System. Several assumptions are needed to clarify traders’ beliefs in this model:

Assumption 2.1. The informed trader and market makers think that it was common belief

among all traders that the asset liquidation value was normally distributed, ṽ ∼ N (0, σ2
v).

Assumption 2.2. Arbitrageurs have the correct Gaussian prior when s̃ = 0, but they face

uncertainty about the variance of fat-tail shocks when s̃ = 1. Their Laplace prior is modeled

as L(0, ξ̃) where ξ̃ ∈ Ω is a positive random variable. Arbitrageurs are ambiguity-averse and

maximize the minimum expected payoff over all possible priors. On average, arbitrageurs are

correct about the information structure, despite their prior uncertainty.

Assumption 2.3. Arbitrageurs know that market makers and the informed trader obey As-

sumption 2.1. Moreover, Assumption 2.2 is held as common knowledge among arbitrageurs.

Since fat-tail shocks occur with probability α in this market, the higher-order moments

of ṽ can differ from those of the Gaussian counterpart ṽG. When α = 0, the asset value ṽ

is exactly Gaussian and the model reduces to the standard two-period Kyle (1985) model.

The Laplace probability density, fL(v) = 1
2ξv

exp
(
− |v|
ξv

)
, has fat tails as it decays to zero

at an exponential rate. Thus, the likelihood of observing extreme events under the Laplace

distribution is much higher than under the Gaussian distribution with identical variance.

Knowledge of s̃ is valuable since it tells traders the distribution type of stock value. If

market makers have fat-tail beliefs and observe s̃ = 1, they should use a convex pricing rule

(which is rarely seen in real data). The Gaussian prior in Assumption 2.1 permits linear

pricing schedules compatible with empirical observations. Despite its simplicity, the linear

pricing function can underestimate the fat-tail information in large order flows. This opens

the door to arbitrageurs because market makers have mistakes with probability α.
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Arbitrageurs are sophisticated traders who may use advanced technology to detect mis-

pricings. Their privilege of observing s̃ represents their superior ability to identify statistical

arbitrage opportunities. Nonetheless, arbitrageurs often face uncertainty about their trading

models. The failure of Long-Term Capital Management (LTCM) demonstrates the critical

role of model risk and the disastrous impact when the worst-case scenario hit. This motivates

Assumption 2.2 that arbitrageurs care about the worst-case expected profits for robustness.

As proved by Gilboa and Schmeidler (1989), the max-min expected utility theory rationalizes

ambiguity-averse preferences. However, decisions derived from maximin optimization tend

to follow the least favorable prior regardless of its likelihood. This appears too pessimistic.

A more realistic assumption is that arbitrageurs’ admissible strategies converge, in a rational

manner18, to the average of optimal strategies evaluated across all possible priors. Similar to

the concept of rational expectations, I assume that arbitrageurs inside this model are correct

on average about the model structure. Without systematic bias, the average of optimal

strategies across all possible priors should converge to the rational-expectations equilibrium

(REE) strategy which corresponds to the ideal case that they know the true prior ξv.

Assumptions 2.1, 2.2, and 2.3 capture salient features of real-life arbitrage. In a nearly

efficient market, arbitrage opportunities should be rare and thus overlooked by most market

participants. Such opportunities may be identified and exploited by a small number of traders

(i.e., arbitrageurs who observe s̃). What may limit their trading is the model risk and their

imperfect competition. Arbitrageurs are likely to have similar priors and preferences, given

that they have similar forecasting technology and face similar pressures of robust control.

The belief system described in Assumption 2.1 can be denoted as B = {s̃ = 0}, which is

shared by the informed trader and market makers. They think that it is common knowledge

among all traders that ṽ ∼ N (0, σ2
v). Arbitrageurs are aware of their Gaussian belief B.

By Assumptions 2.2 and 2.3, the belief system shared by arbitrageurs can be expressed as

A = {s̃, ξ̃}, where ξ̃ denotes the uncertain Laplace prior. Arbitrageurs’ belief depends on

the observed s̃ which tells them the type of prior to use:

ṽ ∼ N (0, σ2
v) if A = {s̃ = 0, ξ̃} and ṽ ∼ L(0, ξ̃) if A = {s̃ = 1, ξ̃}. (2)

Obviously, A and B are consistent when s̃ = 0 but they are at odds when s̃ = 1. Market

makers believe that any uninformed trader holds the same Gaussian prior as they do. In

fact, arbitrageurs can infer that market makers use the wrong prior when s̃ = 1.19.

18To avoid overfitting, their admissible strategy should preserve the convexity of their optimal strategies.
19This is not “agreement to disagree” because traders have inconsistent belief structures here. Han and

Kyle (2017) discussed the situation where traders have inconsistent beliefs about the mean. In my model,
traders agree on the mean but hold inconsistent beliefs about higher moments of ṽ.
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2.1 Equilibrium Definition and Conjecture

The trading of arbitrageurs affects the realized profit of informed trader π̃x. To emphasize

its dependence on all traders’ strategies, we write π̃x = π̃x(X,P,Z). Similarly, each arbi-

trageur takes into account the strategies played by other traders. To stress such dependence,

we write z̃t,n = z̃t,n(X,P,Z) and π̃z,n = π̃z,n(X,P,Z) for n = 1, ..., N . By Assumption 2.2,

each arbitrageur seeks to maximize the minimum expected profit over all possible priors:

max
Zn∈Z2

min
ξ∈Ω

EA
[
π̃z,n

∣∣∣∣s̃, ξ̃ = ξ

]
= max

Zn∈Z2
min
ξ∈Ω

EA

[
2∑
t=1

(ṽ − p̃t)zt,n
∣∣∣∣s̃, ξ̃ = ξ

]
, (3)

where Zn = 〈z1,n, z2,n〉. Both z1,n and z2,n are in the admissible set Z which requires asymp-

totic convergence to the REE without losing the convexity/concavity of the REE strategy.

Definition of Equilibrium. A sequential trading equilibrium in this model is defined as a

tuple of strategies (X,P,Z) such that the following conditions hold:

1. For any alternative strategy X′ = 〈X ′1, X ′2〉 differing from X = 〈X1, X2〉, the strategy

X yields an expected total profit no less than X′, and also X2 yields an expected profit

in the second period no less than the single deviation X ′2:

EB[π̃x(X,P,Z)|ṽ] ≥ EB[π̃x(X
′,P,Z)|ṽ], (4)

EB[(ṽ − p̃2(〈X1, X2〉,P,Z))X2|ṽ, p̃1] ≥ EB[(ṽ − p̃2(〈X1, X
′
2〉,P,Z))X ′2|ṽ, p̃1]. (5)

2. For all n = 1, ..., N and any alternative strategy profile Z′ differing from Z only in the

n-th component Z′n = 〈Z ′1,n, Z ′2,n〉, the strategy profile Z yields a utility level (i.e., the

minimum expected profit over all possible priors) no less than Z′, and also Z2,n yields

a utility level in the second period no less than the single deviation Z ′2,n:

min
ξ∈Ω

EA[π̃z,n(X,P,Z)|s̃, ξ̃ = ξ] ≥ min
ξ∈Ω

EA[π̃z,n(X,P,Z′)|s̃, ξ̃ = ξ]; (6)

min
ξ∈Ω

EA[(ṽ − p̃2(·, Z2,n))Z2,n|s̃, p̃1, ξ̃ = ξ] ≥ min
ξ∈Ω

EA[(ṽ − p̃2(·, Z ′2,n))Z ′2,n|s̃, p̃1, ξ̃ = ξ],(7)

where the strategy profile on the right hand side of Eq. (7) only differs from (X,P,Z)

at Z2,n. Any strategy considered by arbitrageurs has to be in the admissible set Z.

3. The prices, P = 〈P1, P2〉, are set by the market makers’ posterior expectation of ṽ:

p̃1 = P1(ỹ1) = EB[ṽ|ỹ1], and p̃2 = P2(ỹ1, ỹ2) = EB[ṽ|ỹ1, ỹ2]. (8)
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Equilibrium Conjecture. The full equilibrium (X,P,Z) can be characterized separately. The

informed trader and market makers believe that they were living in a two-period Kyle model

(Assumption 2.1). They think that arbitrageurs held the same Gaussian belief and would not

trade in a conjectured equilibrium with (semi-strong-form) market efficiency. This inspires

them to conjecture a subgame perfect linear equilibrium (X,P).

Proposition 2.1. Under Assumptions 2.1, there exists a unique subgame perfect linear

equilibrium (X,P) identical to the linear equilibrium of a two-period Kyle (1985) model with

normally distributed random variables. Market makers set the linear pricing rule:

p̃1 = P1(ỹ1) = λ1ỹ1, p̃2 = P2(ỹ1, ỹ2) = p̃1 + λ2ỹ2, λ1 =

√
2δ(2δ − 1)

4δ − 1

σv
σu
, λ2 = δλ1. (9)

The equilibrium ratio δ = λ2
λ1

is determined by the largest root to the cubic equation:

8γδ3 − 4γδ2 − 4δ + 1 = 0. (10)

The informed trader follows the linear trading strategy:

x̃1 = X1(ṽ) =
ṽ

ρλ1

=
2δ − 1

4δ − 1
· ṽ
λ1

, x̃2 = X2(ṽ, ỹ1) =
ṽ − λ1ỹ1

2δλ1

, (11)

where ρ ≡ 4δ−1
2δ−1

is a liquidity-dependent parameter that reflects the trading intensity at t = 1.

Informed trader and market makers believe that no arbitrageurs would trade under (X,P).

Proof. This is an extension of Proposition 1 in Huddart et al. (2001). See Appendix A.1.

To break even under different liquidity conditions, market makers can adjust the slopes of

linear pricing schedules. For example, when noise trading volatility is constant (i.e., γ = 1),

they can solve from Eq. (10) that δ ≈ 0.901; when γ = 3
4
, they can find that δ = 1 and

λ1 = λ2 =
√

2
3
σv
σu

; when liquidity evaporates (γ → 0), the solution explodes: δ → ∞ so that

λ1 = σv
2σu

and λ2 → ∞. It is convenient to introduce a dimensionless parameter to denote

the liquidity condition. Market depth is usually measured by the inverse of price impact

parameter. To quantify the change of market depth in the second period, I define

µ ≡ λ−1
1 − λ−1

2

λ−1
1

= 1− 1

δ
. (12)

In general, µ ∈ [−1, 1]. For example, µ = 0.5 indicates a 50% drop of market depth, while

µ = 0 reflects constant depth. Market depth becomes higher (i.e., µ < 0) if γ > 3
4
.

10



If market makers know that ṽ is drawn from the mixture distribution, the linear pricing

rule in Eq. (9) can still help them to break even, regardless of the mixture parameter α.

Linear pricing preserves the symmetry of probability distributions so that market makers’

unconditional expected profits are zero : E[(p̃2− ṽ)ỹ2] = 0 and E[(p̃1− ṽ)ỹ1 +(p̃2− ṽ)ỹ2] = 0.

This shows the robustness of linear pricing strategy and may explain its popularity.

By Proposition 2.1, the informed trader and market makers believe that no arbitrageurs

would trade in this market. Thus, any strategy profile Z does not affect the linear equilibrium

strategies X and P. Arbitrageurs can take Proposition 2.1 as given when solving their own

dynamic optimization problems Eq. (6) and Eq. (7). Arbitrageurs know that the informed

trader and market makers do not anticipate their trading. Arbitrageurs take into account

the price impacts of all traders in the market. When s = 0, the belief structure of all traders

is consistent and correct. In this case, arbitrageurs have no advantage over market makers.

Corollary 2.1. When s = 0, arbitrageurs do not trade because the market is indeed efficient.

Arbitrageurs are better “informed” than market makers in the presence of fat-tail shocks.

Will they trade immediately? Let us conjecture now and verify later that arbitrageurs would

not trade in the first period. This is intuitive given the symmetry of their priors and the

linearity of pricing rule. It simplifies the procedure to solve this equilibrium. First, Eq. (7)

can be used to derive the optimal strategy profile 〈Z2,1, ..., Z2,N〉 in the next period under the

conjecture that Z1,n = 0 for all n = 1, ..., N . Second, Eq. (6) can be used to verify that it

is not a profitable deviation for any arbitrageur to trade in the first period. If no one would

deviate, Z = [〈0, Z2,1〉, ..., 〈0, Z2,N〉] will indeed be the equilibrium strategy for arbitrageurs.

2.2 Optimal Strategy without Model Risk

The linearity of informed trader’s strategy X1(v) = v
ρλ1

simplifies arbitrageurs’ inference.

Intuitively, the quantities traded by them in the presence of fat-tail shocks are proportional

to their conditional expectation of the stock value mispriced by the market. Of course,

the posterior estimate of ṽ depends on their fat-tail priors. It is helpful to study the ideal

case that model risk vanishes. If there is no ambiguity in their prior, arbitrageurs become

subjective expected utility optimizers, under their Laplace prior L(0, ξ) when s = 1.

Proposition 2.2. In the absence of model risk, arbitrageurs maximize their expected profits.

Over the liquidity regime µ > µε ≈ −0.2319 where µε is the largest root to the cubic equation

µ3 + 21µ2 + 35µ + 7 = 0, arbitrageurs do not trade at t = 1 and their optimal strategy at

11



t = 2 is proportional to their posterior expectation of θ̃ = ṽ − p1 under the prior L(0, ξ):

Zo
2,n(s, y1; ξ) = s

1− µ
N + 1

· v̂(y1; ξ)− λ1y1

2λ1

= s
1− µ
N + 1

· θ̂(y1; ξ)

2λ1

, n = 1, ..., N. (13)

The estimator v̂(y1; ξ) is the posterior mean of ṽ under the prior that ṽ is drawn from L(0, ξ):

v̂ = EA[ṽ|y1 = y′σu, ξ] =
κξ(y′ − κ)erfc

(
κ−y′√

2

)
erfc

(
κ−y′√

2

)
+ e2κy′erfc

(
κ+y′√

2

) +
κξ(y′ + κ)erfc

(
κ+y′√

2

)
erfc

(
κ+y′√

2

)
+ e−2κy′erfc

(
κ−y′√

2

) .(14)

The rescaled estimator v̂/ξ is an increasing function of the rescaled quantity y′ = y1/σu, with

one dimensionless shape parameter, κ ≡ ρλ1σu
ξ

. The rational-expectations equilibrium (REE)

corresponds to the case that their prior is correct, i.e., ξ = ξv. Under REE, κ = 2√
1+µ

.

Proof. See Appendix A.2.

Arbitrageurs only trade when fat-tail shocks occur. In the eyes of some econometrician

who holds the Gaussian belief and trusts in market efficiency, those arbitrageurs seem to be

“irrational” because they show up randomly and behave like feedback traders. This may

raise various behavioral arguments, without recognizing the misspecification of priors.

Arbitrageurs’ prior is symmetric (non-directional) at the beginning. They postpone arbi-

trage trading until they could tell the trading direction from past price movements, or equiv-

alently, until their posterior beliefs become skewed. Proposition 2.2 confirms this no-trade

conjecture in the first period. It also explains why this paper starts from a two-period setup.

Even though arbitrageurs are better informed (with the knowledge of s̃) than market makers,

their prior expectation of the stock value is identical to market makers’. Arbitrageurs have

to watch the market first to see in which direction market makers incur pricing errors. This

“wait-and-see” strategy suggests that arbitrage trading can be delayed for learning purposes

so that mispricings may sustain for a longer period of time. The mechanism here is different

from the delayed arbitrage discussed in Abreu and Brunnermeier (2002) where arbitrageurs

face uncertainty about when their peers will exploit a common arbitrage opportunity.

The optimal strategy is symmetric with the past order flow: Zo
2,n(s,−y1) = −Zo

2,n(s, y1).

The rescaled strategy, Zo
2,n/σu, is a function of the rescaled order flow y′ = y1/σu in the fat-

tail case. The optimal strategy becomes almost linear at large order flows. Its asymptotic

slope is equal to the slope of linear strategy for traders who have a uniform prior (ξ →∞).

Examination of the first and second derivatives leads to the following statement.

Corollary 2.2. When s = 1, the optimal strategy Zo
2,n(s, y1) is convex in the positive domain

of y1 and concave otherwise. It is asymptotically linear with a limit slope of 1−µ
(1+µ)(N+1)

.
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2.3 Robust Strategy under Model Risk

As indicated by Eq. (14), the estimator v̂ depends on the dispersion of Laplace prior, ξ.

How would arbitrageurs trade when they have uncertain priors? Model risk is a critical issue

in statistical arbitrage, because using a wrong prior could yield a business disaster like the

failure of LTCM. In the real world, traders often face the pressure to test the performance of

their strategies in the worst-case scenario. This pressure can drive them to adopt alternative

strategies that sacrifice some optimality for robustness.

-10 -5 0 5 10
y

1

-5

0

5

Z
2

,n

o

=3

=1

0

Figure 1. The optimal strategy Zo
2,n(s = 1, y1; ξ) in Eq. (13) under different values of ξ.

Fig. 1 shows the optimal strategy under different values of the Laplace parameter ξ. An

arbitrageur with the prior ξ → 0 believes that the stock value is unchanged (i.e., ṽ = 0). This

trader will attribute all the order flow y1 to noise trading and trade against any price change.

In contrast, an arbitrageur with the extreme prior ξ →∞ believes that the past order flow

is dominated by informed trading and thus will chase the price trend straightly. For small ξ,

arbitrageurs will engage in contrarian trading on small order flows which are dominated by

noise trading under their belief. For large ξ, arbitrageurs always use a momentum strategy.

Suppose that arbitrageurs’ uncertain prior ξ̃ is in the interval [ξL, ξH ], where both the

highest and lowest priors, ξH and ξL, have non-zero chances. If the divergence between ξH and

ξL is large enough, arbitrageurs can face ambiguity about the trading direction conditional

on small order flows20: they may want to buy the asset under a high prior (for example,

20If the extreme priors satisfy y1Z
o
2,n(s, y1; ξH) > 0 for any y1 6= 0 and y1Z

o
2,n(s, y1; ξL) ≤ 0 for a nonzero

measure of y1, then different fat-tail priors can give opposite trading directions at small order flows.
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ξ = 3 in Fig. 1) but sell it under a low prior (for example, ξ = 1 in Fig. 1). If they use the

wrong prior, they may trade in the wrong direction and undergo adverse fat-tail shocks.

By Assumption 2.2, arbitrageurs rank strategies based on the maximin decision criterion,

i.e., each arbitrageur maximizes the minimum expected profit over a set of multiple priors.

Pure maximin optimization can give very pessimistic decisions which stick to the least fa-

vorable prior even if it has a tiny chance to occur. To avoid over-pessimistic responses, I

assume that arbitrageurs’ admissible strategies converge to the averaged optimal strategy

(across all priors) in a rational manner that preserves its convexity and/or concavity. Let’s

also enforce internal consistency: arbitrageurs inside this model “know” its structure in a

statistical sense. On average, they are correct about the economy without systematic bias.

First, it is reasonable and important to invoke the convergence condition. If arbitrageurs

observe an extremely large order flow y1, they will be pretty sure that y1 was dominated by in-

formed trading in the fat-tail scenario. This resolves their ambiguity about trading directions

and boosts their confidence to follow the averaged optimal strategy, EA[Zo
2,n(s̃, y1; ξ̃)|s̃ = 1].

Let Z∞ denote the asymptotes of this averaged strategy. Simple derivation yields

Z∞(y1, Kξ) =
1− µ
1 + µ

· y1 − sign(y1)Kξ

N + 1
, where Kξ =

λ1ρ
2σ2

u

ρ− 1
EA[ξ̃−1]. (15)

To ensure internal consistency, Eq. (15) should coincide with the asymptotes of the rational-

expectations equilibrium (REE) strategy given the true prior ξv. This requires EA[ξ̃−1] = ξ−1
v

under which the asymptotes becomes Z∞(y1, K
∗) where

K∗ =
λ1ρ

2σ2
u

(ρ− 1)
ξ−1
v =

3 + µ√
1 + µ

σu =

√
2σv
λ1

. (16)

The condition EA[ξ̃−1] = ξ−1
v means that arbitrageurs’ average belief is correct regarding the

precision of Laplace prior. Similar to the concept of rational expectations, arbitrageurs inside

this model make unbiased predictions on average, despite their uncertainty about the model

structure. Any candidate strategy should converge to Z∞(y1, K
∗). This condition ensures

that the strategy space of arbitrageurs is anchored to their REE strategy (benchmark).

Second, the admissible strategies should rationally preserve the convexity and/or concav-

ity of the optimal strategy. By Corollary 2.2, any optimal strategy (without model risk) is

convex in the positive domain and concave otherwise (Fig. 1). Thus, any candidate strategy

must be convex in the regime of y1 > 0 and concave in the regime of y1 < 0. Without this

convexity-preserving condition, traders would consider strategies with arbitrarily complex

curvatures. This may cause over-fitting problems and make model interpretation difficult.
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Figure 2. The robust strategy Z2,n in the presence of model risk.

Any strategy that converges to the REE strategy without losing its convex property must

lie in the shaded areas of Fig. 2. Any strategy running outside this area violates either the

convergence condition or the convexity-preserving rule. We can focus on the positive domain

and divide the shaded area into three regions. For any y1 ∈ [0, K∗], arbitrageurs will not

sell against y1, because they may lose money if the highest prior ξH is true. This rules out

any decision point inside the triangle “a”. Similarly, arbitrageurs will not buy the stock

since they may also lose money if the lowest prior ξL is true. This rules out any decision

point inside the triangle “b”. So the max-min choice criteria indicate a no-trade zone over

y1 ∈ [0, K∗]. Next, for any y1 > K∗, ambiguity-averse traders should not trade a quantity

more than the one prescribed by the REE asymptotes Z∞(y1, K
∗); otherwise they may lose

in the worst-case scenario. This argument rules out any decision point inside the region “c”.

By symmetry, the robust strategy turns out to be a piecewise linear function of y1, with the

trading threshold K∗. This simple strategy is labeled by the red line in Fig. 2.

Proposition 2.3. If arbitrageurs face sufficient model uncertainty about the fat-tail priors

and if they follow the max-min choice criteria to rank the admissible strategies defined before,

then their robust strategy at t = 2 is a piece-wise linear function of the order flow at t = 1:

Z2,n(s, y1;K∗) = sZ∞(y1, K
∗)1|y1|>K∗ = s

1− µ
1 + µ

· y1 − sign(y1)K∗

N + 1
· 1|y1|>K∗ , (17)

which is along the REE asymptotes with the trading threshold K∗ given by Eq. (16).

Proof. See Appendix A.3.
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The endogenous decision boundary K∗ is independent of the number of arbitrageurs (N)

or the variance of asset value (σ2
v). For constant noise trading volatility (γ = 1), one can find

K∗ ≈ 3.063σu which is roughly three standard deviations of noise order flows. This indicates

a very large inaction zone for the robust strategy. To see how inactive it is, let us examine

the unconditional variance of the first-period total order flow, σ2
y = σ2

v

(ρλ1)2
+ σ2

u = 3+µ
2
σ2
u,

which implies K∗ ≈ 2.5483σy. When the asset value ṽ is Laplacian, the probability that

arbitrageurs get triggered to trade is very small, P (|y1| > K∗) ≈ 1.33%. One might think

that such a strategy is too inert to be profitable. This is not true. Numerically, the robust

strategy can capture about 60% of the maximum profit recouped by the ideal REE strategy.

This performance is surprisingly good given the idleness of the robust strategy. Fat-tail

shocks create a disproportionate distribution of mispricings. The robust strategy is effective

in picking up most profitable opportunities which correspond to those large fat-tail events.

So far, I have discussed various belief-related reasons for arbitrageurs’ inaction. Their

no-trade conditions are summarized as follows:

Corollary 2.3. Arbitrageurs do not trade if any of the following conditions holds:

(1) the market is efficient in the semi-strong form under their belief;

(2) their prior expectation of ṽ is identical to market makers’ expectation;

(3) the past price change cannot drive them out of their inaction (ambiguity) zone.

Proof. Condition (1) holds at s̃ = 0, Condition (2) holds for their decision making at t = 1,

and Condition (3) is implied by Proposition 2.3.

Given their idleness, it may well be the case that arbitrageurs are overlooked by the rest of

the market. This is self-consistent with the implication of Assumptions 2.1, 2.2, and 2.3.

More importantly, given their no-trade strategy in the first period and inaction region in

the second period, a lot of pricing errors can persist in this market. Ex post, an econometri-

cian can run regressions on historical data to discover many mispricings in this economy. The

econometrician may question the rationality or capability of arbitrageurs as they apparently

leave money on the table. Ex ante, arbitrageurs assess all possible states using Bayes’ rule.

They are risk-neutral but ambiguity averse. For maximin robustness, they rationally ignore

small profit opportunities which involve ambiguity about the trading direction. Neither fi-

nancial constraints nor trading frictions exist here. There is no limit to arbitrageurs’ trading

ability. It is model risk that reduces their willingness to eliminate mispricings. This intrinsic

friction is especially important in the fat-tail world where it leads to a large no-trade zone.
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2.4 Equivalent Learning Rule and Alternative Interpretations

The optimal strategy without model risk uses the posterior mean estimate in Bayesian

learning (Proposition 2.2). What is the learning mechanism behind the robust strategy?

Arbitrageurs are Bayesian rational when they solve their maximin objectives, Eq. (6) and

Eq. (7). It is noteworthy that the derived (robust) strategy is observationally equivalent to

the Least Absolute Shrinkage and Selection Operator (LASSO), a famous machine-learning

technique developed by Tibshirani (1996). The LASSO estimate can be interpreted as the

posterior mode under independent Laplace prior. In statistics, the posterior mode is for-

mally known as the Maximum a Posteriori (MAP) estimate. This learning rule itself lacks

Bayesian rationality because it does not use all relevant information in forming expectations

of unknown variables21. Nonetheless, the MAP estimate can “produce” the robust strategy.

Proposition 2.4. If arbitrageurs know the true Laplace prior ξv but directly use the MAP

learning rule to estimate the mispricing signal θ̃ = ṽ − p1, then their strategy in the second

period will be operationally equivalent to the robust strategy in Proposition 2.3:

Z2,n(s = 1, y1;K∗) =
θ̂map

2(N + 1)λ2

=
(v̂map − λ1y1)1|y1|>K∗

2(N + 1)λ2

. (18)

Here, θ̂map is the MAP estimate of θ̃. It contains v̂map which is the MAP estimate of ṽ under

the prior L(0, ξv). This is a soft-thresholding function with a threshold κσu = ρλ1σ2
u

ξv
= 2σu√

1+µ
:

v̂map(y1; ξv) = ρλ1[y1 − sign(y1)κσu]1|y1|>κσu . (19)

Proof. See Appendix A.4.

Fig. 3 compares the learning rules and their associated strategies. Both the posterior

mean estimate v̂ and the REE strategy Zo
2,n(s = 1, y1; ξv) are smooth and nonlinear. In

contrast, the posterior mode estimate v̂map is zero for y1 ∈ [−κσu, κσu] and linear beyond

that zone. The robust strategy Z2,n has a similar pattern as it performs linear momentum

trading beyond the inaction zone [−K∗, K∗]. Traders who follow this strategy only respond

to large events and deliberately ignore small ones. This rational response is similar to various

behavioral patterns, including limited attention, status quo bias, anchoring and adjustment,

among others22. Again, it is worth stressing that arbitrageurs are Bayesian-rational here:

they evaluate all possible states using Bayes rule and maximize their well-defined utility with

21The MAP estimate of a variable equals the mode of the posterior distribution. As a point estimate, it
does not summarize all relevant information in the posterior distribution.

22Barberis and Thaler (2003) provide an excellent survey on those topics in behavioral finance.
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Figure 3. (a) The posterior mean versus the posterior mode of ṽ under the Laplace prior
L(0, ξv). (b) the optimal (REE) strategy versus the robust strategy at t = 2 when s = 1.

sequential rationality. One can apply Propositions 2.3 and 2.4 to rationalize the behavioral

assumption of Gabaix (2014). In his model, the soft-thresholding function like Eq. (19) is

used to describe the anchoring bias. Such behavior also permits a rational interpretation.

In a multi-asset economy subject to uncertain fat-tail shocks, Proposition 2.4 implies

that arbitrageurs can directly incorporate the LASSO algorithm into their trading system:

Corollary 2.4. Suppose that arbitrageurs identify M ≥ 1 assets with independent and iden-

tically distributed liquidation values, ṽi ∼ L(0, ξv) for i = 1, ...,M , and each of these assets is

traded by a single informed trader in the two-period Kyle model with constant noise trading.

For robust learning, arbitrageurs solve the LASSO objective in the Lagrangian form:

min
{v1,...,vM}

M∑
i=1

∣∣∣∣p1,i −
vi
ρ

∣∣∣∣2 +
2(λ1σu)

2

ξv
|vi|, (20)

where p1,i = λ1y1,i is the price change of the i-th asset and ρ−1 is the percentage of private

signal that has been incorporated into the asset price at t = 1. This leads to a simple strategy

Z2,n(p1,i, ξv) =
ρ− 1

N + 1
· p1,i ± 2ξv

2λ2

· 1|p1,i|≥2ξv , for i = 1, ...,M, (21)

which is automatically triggered to trade the i-th asset if its price change p1,i exceeds ±2ξv.

Proof. See Appendix A.4.
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The objective of maximizing the posterior (under MAP) is equivalent to the minimization

problem Eq. (20). It involves an l1 penalty term that comes from the Laplace prior L(0, ξv).

LASSO shrinks certain estimation coefficients to zero and effectively selects a simpler model

that exclude those coefficients. This is a popular tool among quantitative traders because it

picks up a small number of key features (factors) from a large set of candidate features. For

traders who use LASSO, their trading models shall involve fat-tail (typically Laplace) priors.

If traders use the Gaussian prior instead, they will incur an l2 penalty in their objective. The

resulted algorithm is ridge regression which uniformly shrinks the size of all coefficients but

does not send any coefficients to zero. Even with parameter uncertainty about the Gaussian

prior, traders will not get an inaction zone. This is because signal inference is linear when

the posterior is Gaussian. For symmetric unimodal distributions, the mean coincides with

the mode; the two learning rules will give identical predictions. Since different Gaussian

priors only change the slopes of linear responses, the maximin robust strategy in a pure

Gaussian-mixture model will be linear; see Appendix A.4 for more details.

Corollary 2.4 can help explain the momentum strategy and anomaly in asset pricing23.

Short-term momentum traders can be viewed as statistical arbitrageurs who have uncertain

fat-tail priors about mispriced stocks. Their robust trading is exactly the momentum strategy

of buying winners and selling losers. Those traders usually focus on top market gainers and

losers, instead of the entire universe of equities. Corollary 2.4 can also be used to interpret

rule-based algorithmic trading which gets triggered at some predefined price levels. At first

glance, such trading behavior seems to be mechanical and at odds with Bayesian rationality.

It is possible that algorithmic traders are Bayesian-rational. They may use machine-learning

techniques (such as LASSO) to manage unknown risks or improve prediction accuracy.

The robust LASSO strategy can also be used by market makers for error self-correction.

Market makers can split their pricing logic into two programs. The first one is the linear

pricing strategy which allows them to almost break even, despite their occasional mistakes.

The second program uses the fat-tail prior to correct the errors of linear pricing strategy,

just like the actions of arbitrageurs. This leads to the LASSO algorithm. Integrating both

programs, market makers can keep using the linear pricing rule until their inventory exceeds

the endogenous thresholds. At that point, they will switch to momentum trading and reduce

excessive inventories. The no-trade zone in the second program is the ambiguity zone where

they hesitate to correct uncertain pricing errors; this no-trade zone is also their comfortable

zone to do market making. This new interpretation differs from conventional arguments that

market makers’ inventory limits are due to their high risk aversion or large inventory costs.

23See Jegadeesh and Titman (1993), Chan, Jegadeesh, and Lakonishok (1996), Carhart (1997), Hong and
Stein (1999), Daniel, Hirshleifer, and Subrahmanyam (1998), Lee and Swaminathan (2000), among others.
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2.5 Cartel Effect and Market Inefficiency

Arbitrageurs trade conservatively beyond the endogenous inaction zone. Their conserva-

tive trading facilitates their tacit collusion which mitigates their competition and impedes

market efficiency. This has interesting implications for limits to arbitrage.

Proposition 2.5. As N →∞, the total profit of arbitrageurs vanishes if they use the REE

strategy. However, their total profit has a positive limit if they follow the robust strategy.

Proof. If arbitrageurs all follow the optimal REE strategy Zo
2,n(s, y1; ξv), they will compete

away their total arbitrage profit when N goes to infinity:

lim
N→∞

EA

[
N∑
n=1

(ṽ − p̃2)Zo
2,n

]
= lim

N→∞
EA
[
N
(
ṽ − λ1ỹ1 − λ2X2(ṽ, ỹ1)−Nλ2Z

o
2,n

)
Zo

2,n

]
= lim

N→∞
EA
[

(N + 1)(ṽ − λ1ỹ1)−N(v̂ − λ1ỹ1)

2(N + 1)
· N(v̂ − λ1ỹ1)

2(N + 1)λ2

]
= lim

N→∞

N

4(N + 1)2λ2

EA[(v̂(ỹ1)− λ1ỹ1)2] = 0, (22)

where in the above derivation we have used Eq. (11) and EA[ṽ] = EA[EA[ṽ|ỹ1]] = EA[v̂(ỹ1)].

In contrast, if arbitrageurs follow the robust strategy Z2,n(s, y1;K∗), their total arbitrage

profit will converge to a positive value, indicating a cartel effect:

lim
N→∞

EA

[
N∑
n=1

(ṽ − p̃2)Z2,n

]
= lim

N→∞
EA

[
(N + 1)(ṽ − λ1ỹ1)−Nθ̂map

2(N + 1)
· Nθ̂map

2(N + 1)λ2

]

= lim
N→∞

EA[N(N + 1)(v̂ − v̂map + v̂map − λ1ỹ1)θ̂map −N2θ̂2
map]

4(N + 1)2λ2

=
EA[(v̂ − v̂map)θ̂map]

4λ2

> 0, (23)

where in the above derivation we have used Eq. (18) and EA[ṽ] = EA[v̂(ỹ1)]. The expression

of the MAP estimate θ̂map ≡ (v̂map−λ1ỹ1)1|ỹ1|>K∗ implies (v̂map−λ1ỹ1)θ̂map = θ̂2
map. The last

expression is strictly positive because (v̂−v̂map) and θ̂map has the same sign for |ỹ1| > K∗.

Fig. 4(a) shows the total profit of a hundred arbitrageurs who follow the robust strategy,

conditional on the observed order flow y1. This profit profile (red curve) is proportional to

the term (v̂ − v̂map) · θ̂map in Eq. (23). It exhibits two spikes of profits beyond the trading

thresholds (labeled by blue circles). These spikes indicate the major source of their extra
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Figure 4. (a) The arbitrageurs’ total profit under the robust strategy conditional on y1.
(b) The total arbitrage profit under the REE strategy vs. that under the robust strategy.

profits. Intuitively, arbitrageurs’ under-trading is most prominent near the “kinks” of their

robust strategy. Their non-competitive profits must be strongest there.

Fig. 4(b) compares the total payoffs to arbitrageurs when they follow different types of

strategies. In the oligopolistic case (i.e., small N), the REE strategy allows them to earn

higher profits, because the robust strategy ignores a wide range of profit opportunities. As

N increases, the profitability of the REE strategy decays faster. In the competitive limit,

arbitrageurs compete away their profits under REE and restore market efficiency at t = 2.

In contrast, arbitrageurs’ total payoff converges to a positive value when they follow the

robust strategy [Fig. 4(b)]. This confirms Proposition 2.5 and indicates a non-competitive

effect. Their positive limiting payoff is attributable to the market power they amass beyond

the inaction zone, where they trade less aggressively than they would do under REE [Fig.

3 and Fig. 4(a)]. This collusive behavior does not involve any communication device or

explicit agreement. Their tacit collusion is not a result of financial constraints or trading

frictions. It is due to traders’ robust control for (non-Gaussian) model risk. Outside their

inaction region, the cartel effect will prevent the market from being fully efficient .

Corollary 2.5. In the limit N → ∞, arbitrageurs will restore market efficiency when they

follow the REE strategy, i.e., limN→∞ EA[P2(ỹ1, ỹ2)|ỹ1] = EA[ṽ|ỹ1] under Zo
2,n(s, y1; ξv) for

n = 1, ..., N ; however, market efficiency is hindered when a finite fraction of arbitrageurs

follow the robust strategy, i.e., limN→∞ EA[P2(ỹ1, ỹ2)|ỹ1] 6= EA[ṽ|ỹ1] under Z2,n(s, y1;K∗).

Proof. See Appendix A.5.
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By Corollary 2.5, it is difficult to restore market efficiency even if the economy hosts an

infinite number of risk-neutral arbitrageurs. To restore price efficiency in the second period,

it requires that (almost) every arbitrageur follows the REE strategy, that is, (almost) every

arbitrageur knows on average the correct fat-tail prior and has no aversion to uncertainty.

This is practically impossible because real-life arbitrageurs face different levels of model risks.

Moreover, there exist both internal and external pressures that force them to manage such

risks. Their robust control easily translates to their ambiguity aversion, which significantly

limits their willingness to eliminate mispricings. As reviewed in Gromb and Vayanos (2010),

existing studies mostly focus on different costs that limits arbitrageurs’ ability in trading.

Those frictions could be eased by injecting sufficient capital or removing certain constraints.

The mechanism here is different. First, model risk is an intrinsic problem which may not be

resolved easily. Second, arbitrageurs here are able to eliminate pricing errors; they hesitate to

do so because of their aversion to uncertainty24. Third, arbitrageurs’ hesitation in arbitrage

has two characteristics: (1) the large inaction region tells them to leave money on the table;

(2) their undertrading beyond the inaction region supports them as a “cartel”. Consequently,

even with an infinite number of risk-neutral arbitrageurs, a wide range of pricing errors can

persist in this economy. This is an endogenous outcome of model risk.

Nowadays, financial markets have been largely occupied by algorithmic traders. The surge

of quantitative modeling and machine-learning techniques can bring about hidden issues.

The present paper demonstrates that statistical arbitrageurs can use machine-learning tools

to combat model uncertainty and similar algorithmic “kinks” in their strategy can mitigate

their competition at the expense of market efficiency. This is a general implication, given

that many machine-learning algorithms have inaction regions and decision “kinks”.

Equilibrium Condition. In the liquidity regime µ < 0, an arbitrageur may find it profitable

to trade in the first period and take advantage of the aggressive feedback trading of other

arbitrageurs. One can verify Eq. (6) to see whether this unilateral deviation is profitable.

Corollary 2.6. The conjectured equilibrium strategy profile may fail in the liquidity regime

µ < µ∗(N), where µ∗(N) is the largest root that solves 1 + N−1
N+1
· 2

1+µ
= 4√

1−µ . Given a large

number of arbitrageurs using the same robust strategy, it can be profitable for an individual

trader to deviate from the conjectured no-trade strategy in the first period. This deviation in-

volves trading a large quantity z1 � K∗ to trigger the other arbitrageurs and then unwinding

the position at more favorable prices supported by the over-aggressive trading of others.

Proof. See Appendix A.6

24Arbitrageurs are risk-neutral but ambiguity-averse in this setup. Their hesitation to perform arbitrage
trading is not due to their risk aversion.
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3 Model of Savvy Informed Trader

In this section, I extend the previous model to investigate how strategic interaction

between the informed trader and the arbitrageurs affect equilibrium outcomes. This model

extension can be interpreted as an institutional informed trader optimizes the dynamic order-

execution algorithm by taking in account the responses of algorithmic arbitrageurs who use

simple machine-learning strategies to exploit her trades. The extended model can be used,

for example, to analyze controversial issues in algorithmic trading. It can shed light on

hidden risks when algorithmic traders pervade financial markets. Such risks may account

for market vulnerability and deserve more attention from regulators.

Let us consider a savvy informed trader who observes simultaneously the asset value ṽ

and the distribution-type signal s̃ at the beginning. She anticipates the momentum trading of

arbitrageurs and behaves strategically. In the Laplacian case, she will consider how her initial

trading affects arbitrageurs’ next responses. By backward induction, her expected total profit

contains a nonlinear term reflecting her consideration of arbitrageurs’ nonlinear inference.

As a result, her first-period trading strategy is no longer linear and the rational-expectations

equilibrium (REE) becomes intractable; more discussions are available in Appendix A.7.

To gain insights, the analysis in this section is devoted to a tractable model where strategic

arbitrageurs only consider linear-triggering strategies that converge to the REE. This model

keeps the basic structure (Table 1) elaborated in the previous section. I present a set of new

assumptions to clarify traders’ belief systems and information sets.

Assumption 3.1. As common knowledge, this market has fixed linear pricing schedules,

p̃1 = P1(ỹ1) = λ1ỹ1 and p̃2 = P2(ỹ1, ỹ2) = λ1ỹ1 +λ2ỹ2, that are exogenously given by Eq. (9).

Assumption 3.2. Arbitrageurs observe s̃ and have the correct priors: N (0, σ2
v) at s̃ = 0

and L(0, ξv) at s̃ = 1. For simplicity, arbitrageurs only consider linear-triggering strategies

of the form25: Z2,n(s = 1, y1;Kn) = Z∞(y1, ξv)1|Y1|>Kn, where Z∞ denotes the asymptotes of

their REE strategy to be determined in the limit REE. Each arbitrageur chooses the optimal

threshold, taking as given the best responses of other arbitrageurs and the informed trader.

Assumption 3.3. The risk-neutral informed trader observes both ṽ and s̃ at t = 0. This

fact and Assumption 3.3 are held as common knowledge among the informed trader and ar-

bitrageurs. In other words, the informed trader knows everything known by the arbitrageurs,

including their prior belief and their adherence to linear-triggering strategies. Arbitrageurs

also know everything known by the informed trader except the private information ṽ.

25Using linear-triggering strategies, arbitrageurs implicitly conjecture that the informed trader’s strategy
increases with her private signal. However, the Bayesian-rational strategy is not necessarily monotone.
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The above assumptions put our focus on the strategic interplay between informed trader

and arbitrageurs. The linear pricing rule in Assumption 3.1 can hold when market makers be-

lieve that they are living in the two-period Kyel model with the Gaussian prior ṽ ∼ N (0, σ2
v).

Arbitrageurs’ adherence to linear-triggering strategies in Assumption 3.2 is motivated by the

robust strategy discovered in Section 2. If traders worry about the complexity or overtrading

of the REE strategy, they may favor such simple algorithms. The suggested linear-triggering

strategies are determined by three parameters: slope, intercept, and threshold. These provide

well-defined trading rules amenable for computerized executions. Assumption 3.3 explains

the “savviness” of this informed trader who is Bayesian-rational, has correct knowledge about

the information structure, and anticipates the strategy space of arbitrageurs.

The timeline of this model is identical to Table 1, except that the informed trader observes

both ṽ and s̃ at t = 0. The strategies of informed trader and arbitrageurs are denoted by

X = 〈X1, X2〉 and Z = [Z1, ...,ZN ], where Zn = 〈Z1,n, Z2,n〉 is the n-th arbitrageur’s strategy

for n = 1, ..., N . The informed trader knows I1,x = {ṽ, s̃} before trading at t = 1 and

I2,x = {ṽ, s̃, ỹ1} before trading at t = 2. We can write x̃1 = X1(ṽ, s̃) and x̃2 = X2(ṽ, s̃, ỹ1).

Given the information sets of arbitrageurs, I1,z = {s̃} and I2,z = {s̃, ỹ1}, it is justified to

write z̃1,n = Z1,n(s̃) and z̃2,n = Z2,n(s̃, ỹ1) for n = 1, ..., N . Let π̃x =
∑2

t=1(ṽ − p̃t)x̃t be the

informed trader’s profit, and π̃z,n =
∑2

t=1(ṽ − p̃t)z̃t,n be the n-th arbitrageur’s profit. It is

common knowledge that the market-clearing prices are

p̃1 = P1(ỹ1) = λ1ỹ1 = λ1

(
X1(s̃, ṽ) +

N∑
n=1

Z1,n(s̃) + ũ1

)
, (24)

p̃2 = P2(ỹ1, ỹ2) = p̃1 + λ2ỹ2 = λ1ỹ1 + λ2

(
X2(s̃, ṽ, ỹ1) +

N∑
n=1

Z2,n(s̃, ỹ1) + ũ2

)
. (25)

To stress the dependence of prices on the strategies of traders, we write p̃t = p̃t(X,Z) for

t = 1, 2. We also write π̃x = π̃x(X,Z) and π̃z,n = π̃z,n(X,Z) because the strategy of informed

trader will affect the trading profits of arbitrageurs through direct competition and learning

interference, and arbitrageurs’ strategies also affect the informed trader’s profits through

competition and strategic interaction.

In this model, the informed trader and arbitrageurs have the same (consistent) belief

system. In particular, they have correct common knowledge about the mixture distribution of

ṽ. Since s̃ is observed by all of them at t = 0, the informed trader is aware of the time at which

arbitrageurs may trade. However, the informed trader cannot fool arbitrageurs into believing

a different type of ṽ. It is also common knowledge among them that every arbitrageur adheres

to the linear-triggering strategy with only one choice variable: the trading threshold.
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Definition of Equilibrium. The equilibrium here is defined as a pair of strategies (X,Z) such

that, under the market-clearing prices Eq. (24) and Eq. (25), the following conditions hold:

1. For any alternative strategy X′ = 〈X ′1, X ′2〉 differing from X = 〈X1, X2〉, the strategy

X yields an expected total profit no less than X′, and also X2 yields an expected profit

in the second period no less than any single deviation X ′2:

E[π̃x(X,Z)|ṽ, s̃] ≥ E[π̃x(X
′,Z)|ṽ, s̃], (26)

E[(ṽ − p̃2(〈X1, X2〉,Z))X2|ṽ, s̃, ỹ1] ≥ E[(ṽ − p̃2(〈X1, X
′
2〉,Z))X ′2|ṽ, s̃, ỹ1] (27)

2. For all n = 1, ..., N and for any alternative strategy profile Z′ differing from Z only in

the n-th component Z′n = 〈Z ′1,n, Z ′2,n〉, the strategy Z yields an expected profit no less

than Z′, and also Z2,n yields an expected profit in the second period no less than Z ′2,n:

E[π̃z,n(X,Z)|s̃] ≥ E[π̃z,n(X,Z′)|s̃], (28)

E[(ṽ − p̃2(·, Z2,n))Z2,n|s̃, ỹ1] ≥ E[(ṽ − p̃2(·, Z ′2,n))Z ′2,n|s̃, ỹ1]. (29)

The strategy profile on the right hand side of Eq. (29) only differs from (X,Z) at Z2,n.

In the Gaussian case, the informed trader’s strategy remains the same as those in Propo-

sition 2.1; arbitrageurs find no trading opportunity in this efficient market. To solve the equi-

librium in the fat-tail case, it is useful to conjecture first and verify later that arbitrageurs

will not trade in the first period. We first solve their second-period optimal strategy under

this no-trade conjecture and then check if it is indeed unprofitable for any arbitrageur to

trade in the first period. There is another implicit conjecture in the model development. To

follow the linear-triggering strategies, arbitrageurs think that the informed trader plays a

monotone strategy which increases with her private signal. This needs to be verified too.

3.1 Equilibrium with Linear-Triggering Strategies

In the fat-tail case, large order flows at t = 1 are mostly attributable to the informed

trading. This simplifies the inference problem for arbitrageurs as they can conjecture that

X1(s = 1, v)→ v

ρλ1

+ sign(v)cκσu, (30)

where ρ and c are parameters to be determined in the limit equilibrium. The intercept term,

cκσu, reflects how the informed trader exploits her opponents’ learning bias, κσu = ρλ1σ2
u

ξv
. If
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Eq. (30) holds, the arbitrageurs’ estimate of ṽ will be asymptotically linear with the past

order flow. In Appendix A.8, I solve the asymptotic X1(s = 1, v) and derive two algebraic

equations for ρ and c. Their solutions are given by

ρ(µ,N) =
2 + 5N +N2 + 2µ−Nµ− (N + 2)

√
N2 + (1 + µ)2 + 2N(3µ− 1)

2N(1− µ)
, (31)

c(µ,N) = −
3 +N − µ−

√
N2 + (1 + µ)2 + 2N(3µ− 1)

1 +N + µ+
√
N2 + (1 + µ)2 + 2N(3µ− 1)

· N
2
. (32)

Here, the parameter ρ decreases with µ and N , because poorer liquidity or higher competitive

pressure tomorrow can stimulate more aggressive informed trading today. The parameter c

increases (with µ) from −1 to 0, because poor future liquidity tends to discourage strategic

actions; as shown in Appendix A.9, this parameter reflects the extent of how the informed

trader strategically exploits the estimation bias of arbitrageurs. These two parameters can

determine the REE asymptotes, Z∞, which helps us to pin down the following equilibrium.

Proposition 3.1. In the liquidity regime of µ > µε where µε ≈ 0.005 according to numerical

results, the following equilibrium (X,Z) holds. First, arbitrageurs do not trade in the first

period, i.e., Z1,n = 0 for n = 1, ..., N . Their optimal linear-triggering strategy at t = 2 is

Z2,n(s, y1;K∗) = sZ∞(y1, ξv)1|y1|>K∗ = s
(1− µ)(ρ− 1)

N + 2

[
y1 − sign(y1)

ρ(1 + c)κσu
ρ− 1

]
1|y1|>K∗ ,

(33)

K∗(µ,N) = max

[
κσu,

ρ(1 + c)κσu
ρ− 1

]
= σu

2
√

1 + µ

3 + µ
max

[
ρ,
ρ2(1 + c)

ρ− 1

]
. (34)

For the informed trader, the equilibrium strategy at t = 2 is to trade

X2(v, s, y1;K∗) = (1− µ)
v − λ1y1

2λ1

− s
NZ∞(y1)1|y1|>K∗

2
. (35)

The strategy at t = 1 is monotone with her signal and solved by Eq. (126) in Appendix A.10.

Proof. See Appendix A.10.

Corollary 3.1. The linear-triggering strategy Eq. (33) implies the heuristic learning rule,

θ̂T = s · (v̂T − λ1y1)1|y1|>K∗, which estimates θ̃ = ṽ − p1, with

v̂T (y1; ξv) = ρλ [y1 − sign(y1)(1 + c)κσu] 1|y1|>κσu . (36)

Proof. See Appendix A.10 as well.
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(a) (b)

Figure 5. The threshold K∗(µ,N) and the strategy Z2,n(s, y1;K∗) in two liquidity regimes.

The learning rule v̂T looks similar to the MAP estimator v̂map in Eq. (19), except that

the horizontal intercept differs by a factor (1 + c). The learning threshold, κσu ≡ ρλ1σ2
u

ξv
,

is independent of the parameter c, because parallel shifts of the informed trading strategy

do not change the signal-to-noise ratio perceived by arbitrageurs. This learning threshold

depends on the parameter ρ, because more aggressive informed trading (smaller ρ) can make

arbitrageurs learn faster (smaller κσu). The overall learning rule, θ̂T (y1;K∗), is governed by

the threshold K∗, which is the maximum of learning threshold κσu and strategic intercept

term ρ(1+c)κσu
ρ−1

. Since this intercept increases (with µ) from 0 to 2κσu, it must cross κσu at

some intermediate value of µ. This indicates a kink in the equilibrium threshold:

Corollary 3.2. There are two liquidity regimes separated by the critical liquidity value

µc(N) =
√
N(N + 2)3 −N(N + 3)− 1 ∈

[
3
√

3− 5,
1

2

]
. (37)

For µ ∈ [0, µc], Z2,n(s, y1;K∗) is discontinuous at |y1| = K∗ = κσu which decreases with µ.

For µ ∈ [µc, 1], Z2,n(s, y1;K∗) is continuous and has K∗ = ρ(1+c)
ρ−1

κσu which increases with µ.

Proof. The critical liquidity µc is set by the crossover condition 1 = ρ(1+c)
ρ−1

or 1 + ρc = 0.

The rescaled threshold K∗/σu only depends on the liquidity level µ and the competition

condition N (Fig. 5). Under good liquidity µ ∈ [0, µc], the equilibrium threshold is set by

the learning hurdle of v̂T , i.e., K∗ = κσu. Traders who use a threshold lower than κσu may

engage in unjustified trading for a range of states where their estimated signal v̂T is zero.
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Under poor liquidity µ ∈ [µc, 1], the equilibrium threshold is set by the horizontal intercept

of θ̂T , i.e., K∗ = ρ(1+c)
ρ−1

κσu. Traders who use a threshold lower than this may do contrarian

trading for a range of states where their estimated residual signal θ̂T is zero. Arbitrageurs

will keep undercutting their thresholds as far as possible26 until they hit the lower bound

K∗ in Eq. (34) which excludes contrarian trading or any unjustified trading.
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Figure 6. The slope and intercept of Z2(y1) =
∑N

n=1 Z2,n(s = 1, y1;K∗) as a function of µ.

As shown in Fig. 6, the total arbitrage trading Z2(y1) ≡
∑N

n=1 Z2,n(s = 1, y1;K∗) has a

slope, N(1−µ)(ρ−1)
N+2

, which decreases from 1 to 0 as µ varies from 0 to 1. Its horizontal intercept,
ρ(1+c)
ρ−1

κσu, increases from 0 to 2
√

2σu. At constant market depth, the total arbitrage trading

collapses to the 45◦ line, limµ→0 Z2 = y11|y1|>κσu , regardless of the number N . This is

an “order-flow mimicking” strategy, since the total quantity traded by arbitrageurs exactly

mimics the total order flow they observed earlier. Also, this is like a pool of stop-loss orders

which get triggered to execute whenever the price change surpasses λ1κσu = 4
√

2
9

N+1
N
σv in

either direction. A function of the form, F (y) = y1|y|>K , is often called “hard-thresholding”

in machine learning. For µ > 0.5, arbitrageurs always use the “soft-thresholding” strategy.

Let’s look at the strategy of informed trader in different liquidity regimes. If market

liquidity at t = 2 is good (µ < µc), her initial strategy X1(s = 1, v;K∗) is bended toward

K∗ to distort arbitrageurs’ learning [Fig. 7(a)]. With x̃1 ≈ K∗ for a range of ṽ, it will be

difficult for arbitrageurs to infer the strength of ṽ from ỹ1 = x̃1 + ũ1. Their trading decisions

are error-prone because they are largely influenced by noise trading ũ1. The nonlinear pure

26As long as the informed trader’s strategy monotonically increases with her signal, it will be profitable
for arbitrageurs to undercut the threshold as much as possible.
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Figure 7. (a) the informed trader’s strategy X1(s = 1, v) under different µ. (b) the total
payoffs to arbitrageurs in two models under respective linear-triggering strategies.

strategy allows the informed trader to hide her signal temporarily and inhibit the response of

arbitrageurs. If future liquidity is poor (µ > µc), the informed trader will trade more at t = 1

and play the game more honestly. Poor liquidity discourages arbitrage trading and reduces

the incentive to distort their learning. Overall, the informed trader induces arbitrageurs to

trade more competitively. This disrupts their market power and the cartel effect identified

in the model of robust arbitrageurs. Facing the savvy informed trader, arbitrageurs can no

longer sustain extra market power nor earn noncompetitive profits at large N [Fig. 7(b)].

3.2 Disruptive Strategies and Price Manipulations

In this trading game with linear-triggering strategies, there is an implicit belief in the

arbitrageurs’ minds that the informed trader will play a monotone strategy which increases

with her signal. Numerically, this conjecture is found to hold in the liquidity regime where

µ > µε ≈ 0.005. However, the conjectured equilibrium becomes unstable when market depth

is almost constant (µ→ 0). If µ is arbitrarily close to 0, the total order flow from arbitrageurs

will closely mimic the order flow y1. This may invite the informed trader to trick them.

Corollary 3.3. At v = 0 and as µ → 0, the informed trader will first trade a sufficiently

large x1 to trigger arbitrageurs and then trade x2 = −y1 to offset their momentum trading,

i.e., limµ→0X2(v = 0, y1) = −y1 = − limµ→0 Z2(y1). This Bayesian-rational strategy has a

terminal position of x1 +x2 = −u1 which is zero on average, with an expected profit of λ1σ
2
u.
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Proof. This rational strategy follows from Eq. (33) and Eq. (35) by taking both limits v → 0

and µ→ 0. Detailed proof can be found in the Appendix A.11.

𝑣 𝑣

(a) (b)

Figure 8. (a) the optimal strategy of informed trader under µ = 10−4, N = 3 and ξv = 3.
(b) the total payoffs to different groups of traders.

As shown in Fig. 8(a), when the private signal v is very small, the informed trader places

a large order |x1| � K∗ = κσu to trigger arbitrageurs whose trading at t = 2 closely mimics

the total order flow observed at t = 1. This allows the informed trader to liquidate most of

her inventory at more favorable prices at t = 2. The terminal position E[x̃1 + x̃2|ṽ = v] is

almost linear with her private signal v, but her strategy in each period is non-monotone with

her signal. Fig. 8(b) shows the total payoffs to different groups of traders. Arbitrageurs

incur dramatic losses near the origin as they have been fooled by the informed trader who

earns a small profit on average. The losses of arbitrageurs mostly benefit market makers.

The non-monotone strategy seems disruptive and resembles controversial strategies in the

real world, including momentum ignition and stop-loss hunting. These schemes are usually

regarded as trade-based price manipulations by regulators. If such non-monotone strategies

are prohibited (by regulators) in the model, the informed trader at the state v = 0 will not

trade at t = 1. Instead, she will watch the market first and trade at t = 2 against either the

noise-driven price changes or the order flows from arbitrageurs who are falsely triggered.

Kyle and Viswanathan (2008) recommend two economic criteria for regulators to define

illegal price manipulations. These are pricing accuracy and market liquidity. Fig. 9 compares

the (unconditional) probability distributions of prices when the non-monotone strategy is
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Figure 9. The unconditional probability distributions of the prices p̃1 and p̃2 under the
non-monotone strategy versus the monotone strategy, given µ = 10−4, N = 3 and σv = 3

√
2.

allowed or banned. With the non-monotone strategy in Fig. 8(a), price distributions are

bimodal in both periods [Fig. 9(a)]. Pricing accuracy is poor as prices do not reflect the

fundamental value ṽ (with a unimodal distribution). Price volatilities are at least twice as

large as the fundamental volatility σv. If a common investor arrives and trades this asset, she

is likely to buy at a much higher ask price or sell at a much lower bid price. The bimodal price

pattern reflects a much wider bid-ask spread for common investors. In contrast, if regulators

set rules to ban such disruptive strategies, the price distributions become bell-shaped in both

periods with reasonable price volatilities and pricing accuracy [Fig. 9(b)].

Regulators need to sort out the economic conditions for the trade-base manipulations.

The results in this paper prescribe a list of conditions that could be necessary for the non-

monotone disruptive strategy.

(1) Speculators think that market makers set inaccurate prices by using incorrect priors.

(2) Speculators have fat-tail priors about the fundamental value or trading opportunities.

(3) There is strategic interplay between the informed trader and those speculators.

(4) Market depth is not decreasing when the informed trader liquidates her inventory.

(5) Traders face no trading costs, no inventory costs, nor threat from regulators.

(6) There is no other informed trader who could interfere with the disruptive strategy.

The (non-monotone) disruptive strategy may fail if any of these conditions is not satisfied.

It seems not easy at all, but the key condition is that the total feedback trading from
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speculators has a slope no less than one. This could happen if speculators underestimate the

actual number of speculators (N), since each speculator’s demand is inversely proportional

to the number of competitors (estimated by the speculator). This could also happen in the

liquidity regime with µ < 0, where the informed trader could dump her early inventory at

a lower cost and speculators may trade more aggressively. In the conjectured equilibrium,

the response slope of each speculator is given by (1−µ)(ρ−1)
N+2

. If all speculators keep using

this strategy in the liquidity regime µ < 0, the slope of their aggregate response will be

greater than one: N (1−µ)(ρ−1)
N+2

> 1. Over-trading makes speculators susceptible to “disruptive

attacks”. For the informed trader, the profits of tricking speculators can be outweighed by

the losses if she fails to liquidate the undesirable inventory in the second period.

4 Conclusion

This paper studies an equilibrium model of strategic arbitrage in the fat-tail environ-

ment. The presence of arbitrageurs is rationalized by applying random fat-tail shocks to

the standard Kyle model where market makers adhere to Gaussian beliefs. If arbitrageurs

are uncertain about the various of fat-tail shocks, their robust strategy under the max-min

choice criteria is operationally equivalent to the LASSO algorithm in machine learning. For

robustness, arbitrageurs choose to ignore a wide range of small (uncertain) mispricings and

take actions only on large (certain) ones. This strategy is highly effective given its infrequent

trading activity. As a result, many anomalies may be detected ex post by an external econo-

metrician based on historical data in this economy. The econometrician may conclude that

market inefficiency is due to arbitrageurs’ behavioral bias as they overlook those anomalies.

In fact, arbitrageurs are rational under their robust-control objective. They use Bayes rule

to carefully evaluate all possible states over their multiple priors. Arbitrageurs can amass

significant market power due to their under-trading beyond the kinks of robust strategy.

This cartel effect allows them to earn noncompetitive profits which do not vanish even if

their number goes to infinity. Therefore, price efficiency is further impaired.

If the informed trader strategically interacts with those arbitrageurs, she will try to distort

their learning and induce them to trade more aggressively. Under certain market conditions,

the informed trader may play a disruptive strategy that resembles real-life controversial

practices (like momentum ignition). Such trading schemes can distort the informational

content of prices and destabilize stock prices at the expense of common investors.
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A Appendix

A.1 Proof of Proposition 2.1

Under their common belief, the informed trader and market makers first conjecture that

arbitrageurs do not trade if the market is efficient. As in the two-period Kyle (1985) model,

they can seek a linear equilibrium (X,P), where P = 〈P1, P2〉 is the linear pricing strategy

of market makers. Let P1(y1) = λ1y1 and P2(y1, y2) = λ1y1 + λ2y2. The information set of

informed trader before trading at t = 2 is I2,x = {v, y1}. After t = 1, she conjectures the

price at t = 2 as

p̃2 = P2(ỹ1, ỹ2) = λ1y1 + λ2[X2(v, y1) + ũ2], under {I2,x,B}. (38)

Her optimal strategy at t = 2 under the information set I2,x and belief system B is

X2(v, y1) = arg max
x2

EB [(v − p̃2)x2|I2,x] =
v − λ1y1

2λ2

. (39)

The informed trader conjectures the price at t = 1 to be p̃1 = λ1[X1(v)+ ũ1] under {I1,x,B}.
With this notion and X2(v, y1), her subjective expected profit is a quadratic function of x1:

Πx(v, x1) = x1(v − λ1x1) + EB
[

(v − λ1(x1 + ũ1))2

4λ2

∣∣∣∣I1,x = {v}
]
. (40)

The first order condition is 0 = v − 2λ1x1 − v−λ1x1
2δ

, where δ ≡ λ2
λ1

. The optimal strategy is

X1(v) =
2δ − 1

4δ − 1
· v
λ1

=
v

ρλ1

, (41)

where ρ = 4δ−1
2δ−1

. The above results constitute Eq. (11) in Proposition 2.1. Market makers

hold the same Gaussian belief. As an extension of Proposition 1 in Huddart et al. (2001), it

takes some similar calculations to derive that λ1 =

√
2δ(2δ−1)

4δ−1
σv
σu

, where the ratio δ is given

by the largest root to the cubic equation:

8γδ3 − 4γδ2 − 4δ + 1 = 0. (42)

Here, γ > 0 is the ratio of noise trading volatilities over time. Under this pair of linear

strategies X and P, prices are conditional expectations of public information under market

makers’ belief B. So the informed trader and market makers believe that if they play X and

P no arbitrageurs would trade. This confirms the initial conjecture and completes the proof.
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A.2 Proof of Proposition 2.2

Arbitrageurs know that they are not anticipated to trade by the informed trader and market

makers. In the Gaussian case (s = 0), they have no informational advantage over market

makers. The market is efficient under the subgame perfect equilibrium (X,P) in Proposition

2.1. Indeed, arbitrageurs will not trade when s = 0. In the Laplacian case (s = 1), they

can exploit the pricing bias because market makers use the wrong prior. To solve the

equilibrium, I conjecture first and verify later that arbitrageurs do not trade in the first

period, i.e., Z1,n = 0 for n = 1, ..., N . Under this conjecture, I solve their optimal strategy at

t = 2. Arbitrageurs anticipate the informed trader’s linear strategy and the market-clearing

price,

P2(ỹ1, ỹ2) = λ1ỹ1 + λ2

(
X2(ṽ, ỹ1) +

N∑
n=1

Z2,n(s̃, ỹ1) + ũ2

)
. (43)

They estimate ṽ based on the observed y1 and their Laplace prior L(0, ξ̃). In the absence

of model risk (i.e., ξ̃ = ξ), the n-th arbitrageur solves her optimal strategy,

Zo
2,n(s = 1, y1; ξ) = arg max

z2,n
EA [(ṽ − p̃2)z2,n|I2,z] , (44)

under I2,z ≡ {s, y1} and the belief A = {s, ξ}. Let Zo
2,−n =

∑
m 6=n Z

o
2,m be the their aggregate

trading except the n-th arbitrageur’s. The first order condition for z2,n is

EA[ṽ|I2,z]− λ1y1 = λ2

(
EA[X2|I2,z] + 2z2,n + EA[Zo

2,−n|I2,z]
)
. (45)

Since EA[X2|I2,z] = v̂−λ1y1
2δλ1

where v̂ = v̂(y1; ξ) = EA[ṽ|I2,z], the solution is

Zo
2,n(s = 1, y1; ξ) =

v̂ − λ1y1

2δλ1

−
EA[X2|I2,z] + EA[Zo

2,−n|I2,z]

2
=
v̂ − λ1y1

4δλ1

−
EA[Zo

2,−n|I2,z]

2
.

(46)

The n-th arbitrageur conjectures that every other arbitrageur solves the same problem and

trades Zo
2,m = η · (v̂− p1) for any m 6= n, with a coefficient η to be solved. Eq. (46) becomes

Zo
2,n(s = 1, y1; ξ) =

v̂ − λ1y1

4δλ1

− (N − 1)
η(v̂ − λ1y1)

2
= [δ−1 − 2λ1η(N − 1)]

(v̂ − λ1y1)

4λ1

. (47)

Since each arbitrageur makes the same conjecture in a symmetric equilibrium, they find that

η = δ−1−2λ1η(N−1)
4λ1

, which has a unique solution

η =
1

2δλ1(N + 1)
> 0. (48)

39



Without model risk, the optimal strategy of arbitrageurs under the Laplace prior L(0, ξ) is

Zo
2,n(s, y1; ξ) =

v̂(y1; ξ)− λ1y1

2(N + 1)δλ1

=
1− µ
N + 1

· θ̂(y1; ξ)

2λ1

, n = 1, ..., N. (49)

SinceX1(v) = v
ρλ1

, arbitrageurs have a Laplace prior for x̃1, denoted fL(x1) = ρλ1
2ξ

exp
(
−ρλ1|x1|

ξ

)
.

By Bayes’ rule, the posterior probability of the informed trading x1 conditional on y1 is

f(x1|y1) =
f(y1|x1)fL(x1)

f(y1)
=

ρλ1

2ξf(y1)
√

2πσ2
u

exp

[
−(y1 − x1)2

2σ2
u

− ρλ1|x1|
ξ

]
. (50)

The probability density function of ỹ1 = ṽ
ρλ1

+ ũ1 is found to be:

f(y1) =
ρλ1

4ξ
exp

(
ρ2λ2

1σ
2
u

2ξ2

)[
e−

ρλ1y1
ξ erfc

(
ρλ1σ

2
u/ξ − y1√
2σu

)
+ e

ρλ1y1
ξ erfc

(
ρλ1σ

2
u/ξ + y1√
2σu

)]
.

(51)

I define a dimensionless parameter κ ≡ ρλ1σu
ξ

and rewrite f(y1) in a dimensionless form

f(y1 = y′σu) =
κe

κ2

2

4σu

[
e−κy

′
erfc

(
κ− y′√

2

)
+ eκy

′
erfc

(
κ+ y′√

2

)]
, (52)

which is symmetric and decays exponentially at large |y′|. Bayes’ rule implies that

EA[x̃1 = x′σu|y1 = y′σu, ξ] = σu

∫ ∞
−∞

xf(x|y)dx = σu

∫ ∞
−∞

xf(y|x)f(x)

f(y)
dx, (53)

Given that X1(v) = v
ρλ1

, it is easy to derive the posterior expectation of ṽ explicitly:

v̂ = EA[ṽ|y1 = y′σu, ξ] =
κξ(y′ − κ)erfc

(
κ−y′√

2

)
erfc

(
κ−y′√

2

)
+ e2κy′erfc

(
κ+y′√

2

) +
κξ(y′ + κ)erfc

(
κ+y′√

2

)
erfc

(
κ+y′√

2

)
+ e−2κy′erfc

(
κ−y′√

2

) .(54)

The rescaled v̂/ξ is an increasing function of y′ with a single shape parameter κ. Asymptotic

linearity holds at |y′| � κ that v̂ → ρλ1[y1 − sign(y1)κσu]. All the second-order conditions

are easy to check. The REE corresponds to the equilibrium where all arbitrageurs have the

correct prior. Under REE, we have ξ = ξv = σv√
2

such that the shape parameter becomes

κ(ξ = ξv) =
ρλ1σu
ξv

=
4δ − 1

2δ − 1

√
4δ(2δ − 1)

4δ − 1
=

2√
1 + µ

, (55)

where µ ≡ 1− 1
δ

quantifies the percentage change of market depth in the second period.
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To verify that no arbitrageurs would trade in the first period, I examine the condition

Eq. (6). Suppose the n-th arbitrageur deviates from the conjectured strategy by trading a

nonzero quantity Zo,d
1,n = z1 6= 0 in the first period. Then the actual total order flow at t = 1

is ỹ′1 = x̃1 + z̃1 + ũ1, instead of ỹ1 = x̃1 + ũ1 in the conjectured equilibrium. Taking X, P, and

Zo
2,m(s, y′1; ξ) = s

v̂(y′1)−λ1y′1
2(N+1)δλ1

for any m 6= n as given, the n-th arbitrageur’s optimal strategy

at t = 2 conditional on the information set I ′2,z = {s, y1, z1} is

Zo,d
2,n(s, y′1; ξ) = s

v̂(y1; ξ)− λ1y
′
1

2δλ1

− s
EA[X2(ṽ, y′1)|I ′2,z] + EA[Zo

2,−n(s, y′1; ξ)|I ′2,z]
2

= s
v̂(y1; ξ)− λ1y

′
1

4δλ1

− s
Zo

2,−n(s, y′1; ξ)

2

= s
v̂(y1; ξ)− λ1y

′
1

4δλ1

− s(N − 1)[v̂(y′1; ξ)− λ1y
′
1]

4(N + 1)δλ1

= s
v̂(y1; ξ)− λ1y

′
1

2(N + 1)λ2

+ s
N − 1

4(N + 1)λ2

[v̂(y1; ξ)− v̂(y′1; ξ)]. (56)

If the n-th trader does not deviate from the no-trade strategy in the first period, her

optimal strategy should be Zo
2,n(s, y1; ξ) = s v̂(y1;ξ)−λ1y1

2(N+1)δλ1
, where y1 = x1 +u1. For convenience,

we just need to consider the case s = 1. Let’s add the notation that ∆P1 ≡ λ1(ỹ′1−ỹ1) = λ1z1,

∆v̂ ≡ v̂(ỹ′1; ξ)− v̂(ỹ1; ξ), ∆Z ≡ Zo,d
2,n(s, y′1; ξ)− Zo

2,n(s, y1; ξ) = − λ1z1
2(N+1)λ2

− N−1
4(N+1)λ2

∆v̂ and

∆P2 ≡ P2(X,Z′)− P2(X,Z)

= λ1z1 + λ2[∆Z +X2(ṽ, ỹ′1)−X2(ṽ, ỹ1) + Zo
2,−n(ỹ′1)− Zo

2,−n(ỹ1)]

= λ1z −
λ1z

2(N + 1)
− N − 1

4(N + 1)
∆v̂ − λ1z

2
+

(N − 1)(∆v̂ − λ1z)

2(N + 1)

=
λ1z1

2(N + 1)
+

N − 1

4(N + 1)
∆v̂ = −λ2∆Z, (57)

where Z′ differs from Z ≡ [〈0, Zo
2,1〉, ...〈0, Zo

2,N〉] only in the n-th element (Z′)n = 〈z1, Z
o,d
2,n〉.

Since ỹ1 = X1(ṽ) + ũ1, we have EA[ỹ1 · z1] = 0 and EA[v̂(ỹ1) · z1] = 0. The payoff difference is

∆Πd
z,n = EA[(ṽ − p̃2(X,Z′))Zo,d

2,n + (ṽ − p̃1(X,Z′))z1 − (ṽ − p̃2(X,Z))Zo
2,n|s̃ = 1, ξ̃ = ξ]

= EA[ṽz1 − z1p̃1(X,Z′) + ṽ∆Z −∆P2 · Zo,d
2,n − p̃2(X,Z) ·∆Z|s̃ = 1, ξ̃ = ξ]

= −λ1z
2
1 + EA[EA[(ṽ − p̃2(X,Z) + λ2Z

o,d
2,n)∆Z|ỹ1]]

= −λ1z
2
1 + EA

[(
v̂(ỹ1; ξ)− λ1ỹ1

N + 1
+ λ2∆Z

)
·∆Z

]
= −λ1z

2
1 +

EA[(λ1z1 + 1
2
(N − 1)∆v̂)2]

4(N + 1)2λ2

− N − 1

4(N + 1)2λ2

EA [(v̂(ỹ1; ξ)− λ1ỹ1) ·∆v̂] . (58)
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One can rewrite Eq. (58) in a symmetric form with respect to z1:

∆Πd
z,n = −λ1z

2
1 +

EA[(λ1z1)2 + 1
4
(N − 1)2(∆v̂)2 − (N − 1)[v̂(ỹ1; ξ)− λ1(ỹ1 + z1)]∆v̂]

4(N + 1)2λ2

= −λ1z
2
1 +

(λ1z1)2 + EA[1
4
(N − 1)2(∆v̂)2 − (N − 1)(θ̂(ỹ1 + z1; ξ)−∆v̂)∆v̂]

4(N + 1)2λ2

. (59)

This is an even function of z1 because one can use the symmetry of ỹ1 and v̂(·) to prove

EA[θ̂(ỹ1 − z1; ξ) ·∆v̂(ỹ1,−z1; ξ)] = EA[θ̂(ỹ1 − z1; ξ)(v̂(ỹ1 − z1; ξ)− v̂(ỹ1; ξ))]

= EA[θ̂(−ỹ1 − z1; ξ)(v̂(−ỹ1 − z1; ξ)− v̂(−ỹ1; ξ))]

= EA[−θ̂(ỹ1 + z1; ξ)(−v̂(ỹ1 + z1; ξ) + v̂(ỹ1; ξ))] = EA[θ̂(ỹ1 + z1; ξ) ·∆v̂(ỹ1, z1; ξ)].

The first term of Eq. (59) is the average cost to play z1 at t = 1, whereas the second term

represents the average profit from exploiting the biased response of other traders at t = 2.

The profit of this strategic exploitation has an upper limit which is achieved when all the

arbitrageurs have the extreme fat-tail prior ξ → ∞. In this limit, their response to the

past order flow is the strongest and exactly linear with y1: limξ→∞ Z
o
2,n = y1

(N+1)(2δ−1)
. Since

∆Πd
z,n(−z1) = ∆Πd

z,n(z1), we only need to consider the positive deviation. For any z1 > 0,

∆v̂(ỹ1, z1; ξ) ≡ v̂(ỹ1 + z1; ξ)− v̂(ỹ1; ξ) ≤ ρλ1(ỹ′1 − ỹ1) = ρλ1z1, (60)

where the equality holds at ξ →∞. Given that limξ→∞ θ̂(ỹ
′
1; ξ) = λ1(ρ− 1)(ỹ1 + z1), I find

∆Πd
z,n < lim

ξ→∞
∆Πd

z,n = −λ1z
2
1 + λ2

1

z2
1 + 1

4
(N − 1)2ρ2z2

1 − (N − 1)ρEA[((ρ− 1)(ỹ1 + z1)− ρz1)z1]

4(N + 1)2λ2

= −λ1z
2
1 + (1− µ)λ1z

2
1

[(N − 1)ρ+ 2]2

16(N + 1)2
(61)

The last expression of Eq. (61) is negative for any µ > µ∗(N) where µ∗(N) is the largest

root to the equation: 1 +
(
N−1
N+1

)
2

1+µ
= 4√

1−µ . The maximum of µ∗(N) is found to be µε ≡
limN→∞ µ

∗(N) ≈ −0.23191, which is the largest root to the cubic equation:

µ3 + 21µ2 + 35µ+ 7 = 0. (62)

In the liquidity regime of µ > µε ≈ −0.23191, it is indeed unprofitable for any individual

arbitrageur to trade in the first period, i.e., ∆Πd
z,n(z1) < 0 for any z1 6= 0. This confirms the

no-trade conjecture at t = 1 and completes the proof of Proposition 2.2.
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A.3 Proof of Proposition 2.3

All admissible strategies must lie in the area enclosed by Zo
2,n(y1, ξ → 0), Zo

2,n(y1, ξ →∞),

and the REE asymptotes Z∞(y1, K
∗). Any strategy that runs outside this region will violate

either the asymptotic requirement or the condition of convexity/concavity preservation. By

symmetry, we just discuss the positive domain where the REE strategy is always convex. To

satisfy the convexity-preservation rule, the first derivative of an admissible strategy,
∂Z′2,n
∂y1

,

can never decrease in the domain of y1 > 0. With a non-decreasing first derivative, the

admissible strategy can never go beyond the asymptote Z∞(y1, K
∗) and curve back to it.

For y1 ∈ [0, K∗], any selling decision located in the bottom triangle “a” would lose

money in the worst-case scenario (i.e., if the highest prior ξH is true, under which one should

buy). Similarly, any buying decision located in the up triangle “b” would lose money in the

worst-case scenario (i.e., if the lowest prior ξL is true, under which one should buy). This

argument indicates a no-trade strategy over y1 ∈ [0, K∗]. For any y1 > K∗, I will prove that

any buying decision Z ′2,n(y1) located inside the area “c” may either lose more money or earn

less money than the buying decision Z∞(y1, K
∗) determined by the REE asymptotes. Let

Z∆ ≡ Z ′2,n(y1)− Z∞(y1, K
∗). The difference of their payoffs under the lowest prior ξL is

EA[∆π̃z,n|y1, ξ̃ = ξL] = EA
[(
ṽ − λ1y1 − λ2(X2 + Z ′2,n + Z2,−n + ũ2)

)
Z ′2,n

∣∣∣∣y1, ξ̃ = ξL

]
−EA

[
(ṽ − λ1y1 − λ2(X2 + Z∞ + Z2,−n + ũ2))Z∞

∣∣∣∣y1, ξ̃ = ξL

]
= EA

[
Z∆

[
θ̃

2
− λ2(Z∞ + Z2,−n + ũ2)

] ∣∣∣∣y1, ξ̃ = ξL

]
− λ2Z

′
2,nZ∆.(63)

The worst-case scenario is that ξL is true and every other arbitrageur trades Z∞(y1, K
∗).

Let θ̂L(y1; ξL) ≡ EA[θ̃|y1, ξL] and ZL ≡ θ̂L
2(N+1)λ2

. Obviously, ZL < Z∞ < Z ′2,n and Z∆ > 0.

It is not a profitable deviation for anyone to trade more than Z∞(y1, K
∗), since

EA[∆π̃z,n|y1, ξ̃ = ξL] = λ2Z∆[(N + 1)ZL − Z∞ − (N − 1)Z∞]− λ2Z
′
2,nZ∆

= λ2Z∆((N + 1)ZL −NZ∞ − Z ′2,n) < 0. (64)

So the robust strategy is to follow the REE asymptote, Z∞(y1, K
∗), for any y1 > K∗.

By symmetry, the robust strategy is exactly Eq. (17). It remains to verify that no arbi-

trageur would find it profitable to trade in the first period, given that the other arbitrageurs

only trade at t = 2 using the same robust strategy. The proof of no-trade condition Eq. (6)

will be similar to the proof in Proposition 2.2; see Appendix A.6 for more details.
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A.4 Proof of Proposition 2.4 and Corollary 2.4

Under the prior L(0, ξv), the Maximum a Posteriori (MAP) estimate of ṽ given y1 is

v̂map = arg max
v

f(v|y1) = arg max
v

f(y1|v)fL(v) = arg max
v

exp

[
−

(y1 − v
ρλ1

)2

2σ2
u

− |v|
ξv

]
,

(65)

We need to find the point of v that minimizes (y1− v
ρλ1

)2 + 2σ2
u|v|
ξv

whose first order condition is

y1 = v
ρλ1

+κσusign(v). Graphically inverting this function y1(v) leads to the MAP estimator:

v̂map(y1; ξv) = sign(y1)ρλ1 max[|y1| − κσu, 0] = ρλ1 [y1 − sign(y1)κσu] 1|y1|>κσu , (66)

which has a learning threshold κσu = ρλσ2
u

ξv
. Eq. (66) is also known as “soft-thresholding”

in statistics. This gives a Bayesian interpretation for the LASSO algorithm. LASSO has a

similar objective function that involves an l1 penalty arising from the Laplace prior. The

MAP estimate v̂map is a continuous and piecewise-linear function of y1. One can also apply

the MAP learning procedure to directly estimate the residual signal θ̃ = ṽ − p1:

θ̂map = arg max
θ

exp

[
−

(y1 − θ+λ1y1
ρλ1

)2

2σ2
u

− |θ + λ1y1|
ξv

]
= arg min

θ

(y1 − θ+λ1y1
ρλ1

)2

2σ2
u

+
|θ + λ1y1|

ξv
.

(67)

The first order condition of this objective leads to

y1(θ) =
θ

ρλ1

+ sign(θ)
ρκσu
ρ− 1

. (68)

Graphically inverting the function y1(θ) yields the MAP estimator of θ̃:

θ̂map = (ρ−1)λ1 [y1 − sign(y1)K∗] 1|y1|>K∗ , where K∗ =
ρκσu
ρ− 1

=
λ1ρ

2σ2
u

(ρ− 1)ξv
=

√
2σv
λ1

. (69)

Since K∗ = ρ
ρ−1

κσu > κσu, one can also write θ̂map = (v̂map − λ1y1) 1|y1|>K∗ . This establishes

an observational equivalence to the robust strategy, since we find the following identity

Z2,n(s, y1;K∗) = sZ∞(y1, K
∗)1|y1|>K∗ = s

(v̂map − λ1y1) 1|y1|>K∗

2(N + 1)λ2

=
s · θ̂map

2(N + 1)λ2

. (70)

Therefore, if arbitrageurs directly use the MAP rule to estimate the mispricing signal θ̃, they

will get the same strategy Z2,n(s, y1;K∗). This MAP rule (posterior mode estimate) differs

from the posterior mean v̂(y1; ξv) which drives the REE strategy Zo
2,n(s, y1; ξv).
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Proof of Corollary 2.4: The MAP estimate for each asset value under the prior L(0, ξv) is:

v̂i,map = arg max
vi

f(vi|y1,i) = exp

[
−

(y1,i − vi
ρλ1

)2

2σ2
u

− |vi|
ξv

]
= arg min

vi

∣∣∣∣p1,i −
vi
ρ

∣∣∣∣2+
2(λ1σu)

2

ξv
|vi|,

(71)

which amounts to the LASSO objective in the Lagrangian form for i ∈ {1, ...,M}. This leads

to the trading algorithm below, which takes the price change p1,i for each stock as input:

Z2,n(p1,i, ξv) =
(ρ− 1) [λ1y1,i − sign(y1,i)λ1K

∗] 1|λ1y1,i|>λ1K∗

2(N + 1)λ2

=
ρ− 1

N + 1
· p1,i ± 2ξv

2λ2

1|p1,i|>2ξv

(72)

where we have used Eq. (16) to derive λ1K
∗ =
√

2σv = 2ξv given ξv = σv/
√

2. Q.E.D.

What if arbitrageurs all adhere to the Gaussian prior? First, they will not trade if their

Gaussian prior is identical to market makers’ Gaussian prior because they will find out

the market is efficient in the semi-strong sense. Arbitrageurs only trade when they have

different prior beliefs. Let’s model their Gaussian prior as ṽ ∼ N (0, ζ̃2), where ζ̃ is a

random variable reflecting the model uncertainty about the Gaussian prior dispersion. The

assumption of prior distribution only changes how arbitrageurs learn from prices without

affecting the informed trader’s strategy by Assumption 2.1. For any specific value of ζ̃ = ζ,

the arbitrageurs’ posterior belief about ṽ conditional on ỹ1 = ṽ
ρλ1

+ ũ1 is still Gaussian:

f(v|y1) =
f(y1|v)fG(v)

f(y1)
=

1

2πζσuf(y1)
exp

[
−(y1 − v/(ρλ1))2

2σ2
u

− v2

2ζ2

]
. (73)

Under the Gaussian prior of ṽ, arbitrageurs believe that y1 = ṽ
ρλ1

+ ũ1 ∼ N (0, ζ2/(ρλ1)2 +σ2
u)

for a given value of ζ. By projection theorem, they obtain a linear estimator,

v̂(y1; ζ) = EN [ṽ|y1, ζ] =
ζ2/(ρλ1)

ζ2/(ρλ1)2 + σ2
u

y1 =
ρλ1ζ

2

ζ2 + (ρλ1σu)2
y1. (74)

The mean of a Gaussian distribution is the same as its mode. So the MAP estimate of

ṽ coincides with the posterior mean, i.e., v̂map = v̂ in this case. The rational strategy for

arbitrageurs with Gaussian priors is always a linear function of the order flow y1:

Zo
2,n(y1; ζ) =

1

N + 1

v̂ − λ1y1

2δλ1

=
(ρ− 1)ζ2 − (ρλ1σu)

2

ζ2 + (ρλ1σu)2
· y1

2(N + 1)
, for n = 1, ..., N. (75)

Any uncertainty about the prior ζ only changes the slope of this linear strategy. Therefore,

the robust strategy must be linear under the max-min choice criteria.
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A.5 Proof of Corollary 2.5

If arbitrageurs follow the REE strategy when s = 1, the price at t = 2 is

p̃2 = λ1ỹ1 + λ2

[
X2 +

N∑
n=1

Zo
2,n(s, ỹ1; ξv) + ũ2

]
=
ṽ + λ1ỹ1

2
+

N

N + 1

v̂ − λ1ỹ1

2
+ λ2ũ2. (76)

As N →∞, the expectation of p̃2 = P2(ỹ1, ỹ2) under arbitrageurs’ information and belief is

lim
N→∞

EA[p̃2|I2,z] =
v̂ + λ1y1

2
+
v̂ − λ1y1

2
= v̂ = EA[ṽ|I2,z]. (77)

When arbitrageurs use the robust strategy, the price at t = 2 is

p̃2 = λ1ỹ1+λ2

[
X2 +

N∑
n=1

Z2,n(s, ỹ1;K∗) + ũ2

]
=
ṽ + λ1ỹ1

2
+

N

N + 1

v̂map − λ1ỹ1

2
1|ỹ1|>K∗+λ2ũ2.

(78)

The (ex ante) expected price under arbitrageurs’ information and belief has a positive limit:

lim
N→∞

EA[p̃2|I2,z] =
v̂ + λ1y1

2
+
v̂map − λ1y1

2
1|y1|>K∗ =

v̂ + v̂map
2

− v̂map − λ1y1

2
1|y1|>K∗ 6= v̂,

(79)

indicating price inefficiency in the limit of N →∞.

A.6 Proof of Corollary 2.6

If arbitrageurs only trade at t = 2 and follow the robust strategy we derived, each of them

may find that the total trading of other arbitrageurs has a response slope greater than one,

i.e., N−1
N+1
· 1−µ

1+µ
> 1 if −1 < µ < 0 and N > − 1

µ
. It may become profitable for any arbitrageur

to disrupt the equilibrium by trading a large quantity, z1 � K∗, in the first period so that

the other arbitrageurs will be triggered almost surely. If z1 >
(N−1)(µ−1)

2(Nµ+1)
K∗, the momentum

trading of arbitrageurs at t = 2 can overwhelm the trade z1. This may create opportunities

for the initial instigator to unwind her position at favorable prices.

Suppose the n-th arbitrageur (instigator) secretly trades z1 6= 0 when s = 1 to trick other

traders. Her objective at t = 2 is to maximize the minimum expected profit over all possible

priors: maxz′2,n∈Z minξ∈Ω EA[(ṽ − λ1ỹ
′
1 − λ2ỹ

′
2)z′2,n|I2,z], where ỹ′1 = X1(ṽ) + z1 + ũ1 and

ỹ′2 = X2(ṽ, ỹ′1) + z′2,n + Z2,−n(ỹ′1, K
∗) + ũ2. Here, Z2,−n =

∑
m6=n Z2,m(y′1, K

∗) =
(N−1)θ̂map(y′1)

2(N+1)λ2

is the total quantity traded by the other arbitrageurs (excluding the n-th one) who form the

estimate of θ̃ = ṽ−λ1y
′
1 based on y′1 without knowing that y′1 contains the secret trade z1. The

instigator’s estimate, θ̂map(y1) = [v̂map(y1)−λ1y1]1|y1|>K∗ = (ρ−1)λ1[y1−sign(y1)K∗]1|y1|>K∗ ,
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is however based on y1 = x1 + u1 instead of y′1, because she is aware of the order flow z1

secretly placed by herself. The strategy of this instigator in the second period reflects how

she strategically exploits the other traders’ overreaction due to her trade z1:

Z ′2,n(y1, z1) =
v̂map(y1)− λ1y

′
1

4λ2

1|y1|>K∗ −
N − 1

4(N + 1)λ2

[v̂map(y
′
1)− λ1y

′
1]1|y′1|>K∗

=
θ̂map(y1)

4λ2

− z1

4δ
− (N − 1)(ρ− 1)(y1 + z1 −K∗)

4(N + 1)δ

=
θ̂map(y1)

2(N + 1)λ2

−
(N + 1)z1 + (N − 1)(ρ− 1)[z1 + (y1 −K∗)1|y1|<K∗ ]

4(N + 1)δ
,(80)

where we used the condition z1 � K∗ so that 1|y′1=y1+z|>K∗ = 1 with probability arbitrarily

close to 1. Her expected total profit is Πd
z,n = EA[(ṽ− λ1ỹ

′
1)z1 + (ṽ− λ1ỹ

′
1 − λ2ỹ

′
2) ·Z ′2,n|I1,z]

and the extra profit attributable to her unilateral deviation (z1, Z
′
2,n) is

∆Πd
z,n = Πd

z,n − EA[(ṽ − λ1ỹ1 − λ2ỹ2) · Z2,n|s̃ = 1], (81)

where ỹ1 = X1(ṽ)+ ũ1, ỹ2 = X2(ṽ, ỹ1)+
∑N

n=1 Z2,n(ỹ1, K
∗)+ ũ2, and Z2,n(ỹ1, K

∗) = θ̂map(ỹ1)

2(N+1)λ2
.

Using the results EA[ỹ1 · z1] = 0, EA[θ̂map(ỹ1) · z1] = 0 and θ̂map1|y1|<K∗ = 0, we derive that

∆Πd
z,n = −λ1z

2
1 + λ2EA[(Z ′2,n(ỹ1, z1))2]− λ2EA[(Z2,n(ỹ1, K

∗))2]

= −λ1z
2
1 + λ2EA[(Z ′2,n(ỹ1, z1) + Z2,n(ỹ1, K

∗))(Z ′2,n(ỹ1, z1)− Z2,n(ỹ1, K
∗))]

= −λ1z
2
1 + λ2

(
λ1

λ2

)2

EA

[(
(N − 1)ρ+ 2

4(N + 1)
z1 +

(N − 1)(ρ− 1)

4(N + 1)
(ỹ1 −K∗)1|ỹ1|<K∗

)2
]

= −λ1z
2
1 + (1− µ)λ1z

2
1

[
(N − 1)ρ+ 2

4(N + 1)

]2

+ (1− µ)λ1
(N − 1)2(ρ− 1)2

16(N + 1)2
EA[(ỹ1 −K∗)21|ỹ1|<K∗ ].

Since δ = 1
1−µ and ρ = 3+µ

1+µ
by definition, the above expression is positive if the coefficient

in front of z2
1 is positive. This is equivalent to the condition:

1 +
N − 1

N + 1
· 2

1 + µ
>

4√
1− µ

. (82)

Given any N > 1, there exists a critical liquidity point µ∗(N) below which ∆Πd
z,n > 0.

For example, µ∗(N = 2) ≈ −0.68037, µ∗(N = 3) ≈ −0.54843, µ∗(N = 10) ≈ −0.33525,

limN→∞ µ
∗ = µε ≈ −0.23191. Thus, in the liquidity regime µ < µε ≈ −0.23191, if the num-

ber of arbitrageurs is large enough, the conjectured equilibrium Z = [〈0, Z2,1〉, ..., 〈0, Z2,N〉]
may fail, because it may permit profitable deviations (or disruptive strategies) at t = 1.
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A.7 Savvy Informed Trader: Rational-Expectations Equilibrium

For s = 1, we investigate the rational-expectations equilibrium (REE) in the model of savvy

informed trader who anticipates arbitrageurs and strategically interacts with them. Based

on I2,x = {v, s, y1}, the informed trader conjectures her residual demand at t = 2 and solves

X2(v, y1) = arg max
x2

E [(v − P2(ỹ1, ỹ2))x2|I2,x] = (1− µ)
v − λ1y1

2λ1

− E[Z2|I2,x]

2
. (83)

As the informed trader takes into account the price impact of all arbitrageurs, she will reduce

her trading quantity by one half of the total arbitrage trading that she expects at t = 2.

The information set of arbitrageurs right after t = 1 is I2,z = {s, y1}, which is nested into

the informed trader’s information set I2,x = {v, s, y1}. The n-th arbitrageur’s objective is

max
z2,n

E [z2,n (ṽ − λ1ỹ1 − λ2 [X2(ṽ, ỹ1) + z2,n + Z2,−n(ỹ1) + ũ2]) |I2,z] , (84)

from which she can solve the optimal strategy as below

Z2,n(y1) = (1− µ)
v̂ − λ1y1

4λ1

− E[Z2,−n|I2,z]

2
+

E[E[Z2|I2,x]|I2,z]

4
. (85)

Arbitrageurs are symmetric in terms of their information and objectives. The n-th arbi-

trageur conjectures that the other arbitrageurs will trade Z2,m = η ·(v̂−λ1y1) for m = 1, ..., N

and m 6= n, and she also conjectures the informed trader’s conjecture that all arbitrageurs

trade symmetrically Z2,n = η · (v̂ − λ1y1) for n = 1, ..., N . So her optimal strategy becomes

Z2,n(y1) =

(
1− µ
4λ1

− (N − 1)η

2
+
Nη

4

)
(v̂ − λ1y1). (86)

In a symmetric equilibrium, every arbitrageur conjectures in the same way and solves the

same problem. This symmetry requires η = 1−µ
4λ1
− (N−1)η

2
+ Nη

4
that has a unique solution

η = 1−µ
(N+2)λ1

. Thus the total order flow from arbitrageurs at t = 2 can be written as

Z2 =
N∑
n=1

Z2,n = Nη · (v̂ − λ1y1) =
N(v̂ − λ1y1)

(N + 2)λ2

. (87)

One can prove a simple result that Z2,n = E[X2|I2,z], i.e., every arbitrageur expects that the

informed trader on average trades the same quantity as she does. By Eq. (83) and (87),

E[X2(ṽ, ỹ1)|I2,z] =
E[ṽ|I2,z]− λ1y1

2λ2

− E[E[Z2|I2,x]|I2,z]

2
=
v̂ − λ1y1

2λ2

− Z2

2
=
Z2

N
= Z2,n. (88)
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As v̂ = E[ṽ|I2,z], we obtain the following

Z2,n(y1) = η(v̂ − λ1y1) =
1− µ

(N + 2)λ1

(E[ṽ|I2,z]− λ1y1) = E[X2|I2,z], (89)

X2(v, y1) =
v − λ1y1

2λ2

− Z2

2
=
v − λ1y1

2λ2

− N

N + 2

E[ṽ|I2,z]− λ1y1

2λ2

. (90)

One can rewrite the second-period informed trading strategy as

X2(v, y1) =
v − λ1y1

(N + 2)λ2

+
N

N + 2
· v − v̂

2λ2

, (91)

where the first term is proportional to her informational advantage over market makers

and the second term is proportional to her residual advantage over arbitrageurs. Let v̂ =

E[ṽ|I2,z] = g(y1). The informed trader will conjecture the average price at t = 2 to be

E[p̃2|I2,x] = E

[
λ1ỹ1 + λ2

(
X2 +

N∑
n=1

Z2,n + ũ2

)∣∣∣∣I2,x

]
=

(N + 2)v +Ng(y1) + 2λ1y1

2(N + 2)
, (92)

The informed trader’s expected profit from her second-period trading is

Π2,x(v, y1) = E[x2(v − p̃2)|I2,x] =
1

λ2

(
(N + 2)v −Ng(y1)− 2λ1y1

2(N + 2)

)2

. (93)

The informed trader needs to choose x1 that maximizes her total expected profits:

Πx(v) = max
x1

E [x1(v − λ1ỹ1) + Π2,x(v, ỹ1)|I1,x]

= max
x1

x1(v − λ1x1) +
1− µ
λ1

E

[(
(N + 2)v −Ng(ỹ1)− 2λ1ỹ1

2(N + 2)

)2 ∣∣∣∣I1,x

]
, (94)

where I1,x = {v, s = 1}. As regularity conditions permit, one can interchange expectation

and differentiation operations to derive the first order condition (FOC) for x1 = X1(v):

0 = v − 2λ1x1 −
1− µ
λ1

E

[
(N + 2)v −Ng(x1 + ũ1)− 2λ1(x1 + ũ1)

2(N + 2)
· Ng

′(x1 + ũ1) + 2λ1

N + 2

]
.

(95)

When s = 1, there does not exist a linear REE where the informed trader’s strategy X1

is a linear function of v. This is proved by contradiction: Suppose X1 is a linear function of

v, the posterior mean g(y1) = E[ṽ|I2,z] will be a nonlinear function of y1. With a nonlinear

g(y1), the FOC Eq. (95) does not permit a linear solution to X1(v). Nonlinearity makes Eq.

(95) and the REE intractable in general.
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A.8 Savvy Informed Trader: Asymptotic Linearity

Based on the asymptotic conjecture of X1(v) → v
ρλ1

+ cκσu in the high signal regime, arbi-

trageurs will find that the posterior distribution of x1 conditional on y1 is asymptotically

f(x1|y1)→ ρλ1

ξvf(y1)
√

2πσ2
u

exp

[
−(y1 − x1)2

2σ2
u

− ρλ1(x1 − cκσu)
ξv

]
. (96)

At large order flows, it is deduced that E[x̃1|y1]→ y1 − κσu and furthermore

E[ṽ|I2,z]→ ρλ1[y1 − (1 + c)κσu]. (97)

This result makes the informed trader’s FOC Eq. (95) for x1 = X1(v) linear again:

0 = v− 2λ1x1−
1

λ2

E

[(
(N + 2)v −Nρλ1[ỹ1 − (1 + c)κσu]− 2λ1ỹ1

2(N + 2)

)(
Nρλ1 + 2λ1

N + 2

) ∣∣∣∣I1,x

]
.

(98)

After some calculation with the notation δ ≡ λ2
λ1

= 1
1−µ , we get

0 = v − 2λ1x1 −
Nρ+ 2

2δ(N + 2)2
[(N + 2)v − (Nρ+ 2)λ1x1 +N(1 + c)κρλ1σu] . (99)

This FOC leads to a linear expression of x1 which conforms to the original linear conjecture:

X1(v) =
(N + 2)[2δ(N + 2)−Nρ− 2]

4δ(N + 2)2 − (Nρ+ 2)2

(
v

λ1

)
− Nρ(Nρ+ 2)(1 + c)κ

4δ(N + 2)2 − (Nρ+ 2)2
σu. (100)

Matching the first term leads to a quadratic equation for ρ:

− 2(ρ− 1)(Nρ+ 2) + 2δ(ρ− 2)(N + 2)2 = 0. (101)

There are two roots to this equation but only one of them is sensible as it increases with δ:

ρ(δ,N) =
N + δ(N + 2)2 − 2− (N + 2)

√
δ2(N + 2)2 − 2δ(3N + 2) + 1

2N
. (102)

Substituting δ = 1
1−µ into the above equation leads to

ρ(µ,N) =
2 + 5N +N2 + 2µ−Nµ− (N + 2)

√
N2 + (1 + µ)2 + 2N(3µ− 1)

2N(1− µ)
. (103)
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For N = 0, we have ρ = 3+µ
1+µ

which is identical to the parameter ρ in the previous model.

There are two more useful limits: limµ→0 ρ = 2
(
1 + 1

N

)
and limµ→1 ρ = 2. This equilibrium

parameter ρ decreases with µ and N . It is bounded in the range
[
2, 2(N+1)

N

]
. Now we match

the intercept terms and utilize the slope-matching relation to obtain

c = − N(2 +Nρ)

2δ(2 +N)2 − 2(2 +Nρ)
= −

3 +N − µ−
√
N2 + (1 + µ)2 + 2N(3µ− 1)

1 +N + µ+
√
N2 + (1 + µ)2 + 2N(3µ− 1)

· N
2
. (104)

In the competitive case, we have

lim
N→∞

c = lim
N→∞

−N(2 + 2N)

2δ(2 +N)2 − 2(2 + 2N)
= −1

δ
= −(1− µ). (105)

There are two more useful limits: limµ→0 c = −1 and limµ→1 c = 0.

Approximation to the rational equilibrium. The symmetry indicates that X1(−v) = −X1(v).

If X1(v) is monotone, it should cross the origin and be roughly linear in that neighborhood.

With the linearized conjecture X1(v → 0)→ v
αλ1

, one can use Taylor expansion of Eq. (14)

at small y1 to approximate E[ṽ|y1 � κσu] ≈ αβλ1y1, where α and β are determined by

βN [βN − (N + 2)]α2 + 2

(
(N + 2)2

1− µ
+ 2βN − (N + 2)

)
α− 4

(
(N + 2)2

1− µ
− 1

)
= 0,

β = 1 +

(
αλ1σu
ξ

)2

−
(
αλ1σu
ξ

) e
− (αλ1σu)

2

2ξ2

√
2
π

erfc
(
αλ1σu√

2ξ

) .
The first equation is derived from the FOC Eq. (95) and the second one is from the Taylor

expansion of Eq. (14). Given {µ,N, ξ}, one can numerically find a unique pair of positive

solutions to α and β. With constant depth (µ = 0), the first equation becomes α = 2(N+3)
N+2−Nβ

and the total demand from arbitrageurs becomes limµ→0 Z2 ≈ limµ→0
N(αβ−1)
N+2

y1 = (α −
3)y1 for small y1. The rational equilibrium is not tractable, but one can approximate the

arbitrageurs’ rational strategy by smoothly pasting the two regimes of asymptotic linearity.

There are different methods to make a smooth transition between two linear segments; for

example, any sigmoid functions that approach the Heaviside function may work. Here, I use

q(y) = 1
2
erfc[a(κσu−y)]+ 1

2
erfc[a(κσu+y)], with a tunable parameter a > 0 and approximate

the posterior mean estimate of ṽ by

v̂a(y1) ≈ [1− q(y1)]αβλ1y1 + q(y1)ρλ1[y1 − sign(y1)(1 + c)κσu]. (106)
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Clearly, v̂a → αβλ1y1 at |y1| � κσu and v̂a → ρλ1[y1 − sign(y1)(1 + c)κσu] at |y1| � κσu.

The figure below shows numerical approximations to the Bayesian-rational strategy Zo
2,n(s =

1, y1; ξ) under different ξ, compared with the linear-triggering strategy Z2,n(s = 1, y1;K∗).
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Figure 10. Approximate rational strategies and the linear-triggering strategy (red line).

A.9 Learning Bias and Strategic Informed Trading

Corollary A.1. Arbitrageurs tend to underestimate the private signal ṽ by a negative amount

−ρκλ1σu < 0. Anticipating this estimation bias, the informed trader in the high signal regime

will strategically shift her demand downward by an amount of cκσu < 0 at t = 1 and upward

by an amount of dκσu > 0 at t = 2 where the parameter d(µ,N) is given by Eq. (111). her

average terminal position contains an informational component and a strategic component,

that is, E[X1(v) +X2(v, ũ1)]→ X∗inf (v) +X∗str, where X∗str = (c+ d)κσu and

X∗inf =
N + 1 + µ+ ρ(1− µ)

N + 2

v

ρλ1

, (107)

Given any N > 0, the maximum of X∗inf (v) is at µc(N) =
√
N(N + 2)3 −N(N + 3)− 1.

Proof: In the asymptotic rational equilibrium we have shown E[ṽ|I2,z]→ ρλ1[y1−(1+c)κσu]

and y1 = X1(v) + ũ1 → (ρλ1)−1ṽ + cκσu + ũ1. Arbitrageurs tend to underestimate ṽ,

E[ṽ|I2,z]− ṽ = −ρλ1κσu + ρλ1ũ1 ∼ N [−ρλ1κσu, (ρλ1σu)
2], (108)

which has a negative mean −ρλ1κσu < 0. This learning bias of arbitrageurs entices the

informed trader to strategically exploit it. This can be seen from her asymptotic strategy:

X2(v, y1)→ (1− µ)

[
v − λ1y1

2λ1

− N

N + 2

(ρ− 1)y1 − (1 + c)κρσu
2

]
, (109)
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whose average contains both an informational component and a strategic one:

E[X2|ṽ = v] =
(1− µ)(1− ρ−1)

λ1(N + 2)
v +

(1− µ)(Nρ− 2c)

2(N + 2)
κσu. (110)

We define another parameter d for this strategic shift which decreases with µ and N :

d(µ,N) =
(1− µ)(Nρ− 2c)

2(N + 2)
=

2N(1− µ)

1 +N + µ+
√
N2 + (1 + µ)2 + 2N(3µ− 1)

. (111)

It has the following limit results: limµ→0 d = 1, limµ→1 d = 0, and limN→∞ d = 1− µ. Thus,

we have shown that X1 → v
ρλ1

+ cκσu where c < 0 and E[X2|v]→ (1−µ)(1−ρ−1)
λ1(N+2)

v+dκσu where

d > 0. This shows how the informed trader strategically exploit the arbitrageurs’ bias κσu.

The asymptotic terminal position of the informed trader can be decomposed into an infor-

mational term and a strategic term, that is, E[X1(v) + X2(v, ũ1)] → X∗inf (v) + X∗str where

X∗str = (c+ d)κσu ≥ 0. The information-based target inventory is found to be

X∗inf (v;µ,N) =
v

ρλ1

+
(1− µ)(1− ρ−1)

λ1(N + 2)
v =

N + 1 + µ+ ρ(1− µ)

N + 2
· v

ρλ1

=
1 + 3N + µ−

√
N2 + (1 + µ)2 + 2N(3µ− 1)

Nρ
· v

2λ1

. (112)

which is hump-shaped and reaches its maximum at

µc(N) =
√
N(N + 2)3 −N(N + 3)− 1. (113)

For example, X∗inf has its maximum 0.5359 v
λ1

at N = 1 and µc(N = 1) = 3
√

3−5 = 0.196152.

The informed trader manages to reach an informational target position roughly equal to v
2λ1

.
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Figure 11. The information-based target inventory X∗inf (v) and the strategic position X∗str.
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A.10 Proof of Proposition 3.1

The candidate linear-triggering strategy for each arbitrageur along the REE asymptotes is

Z2,n(s, y1;Kn) = sZ∞(y1, K
∗)1|y1|>Kn = s

(1− µ)(ρ− 1)

N + 2

[
y1 − sign(y1)

ρ(1 + c)κσu
ρ− 1

]
1|y1|>Kn .

(114)

For s = 1, this can be rewritten as

Z2,n(s, y1;Kn) =
ρλ1[y1 − sign(y1)(1 + c)κσu]− λ1y1

(N + 2)λ2

1|y1|>Kn

= η · [v̂T (y1; ξv)− λ1y1] 1|y1|>Kn , (115)

where η = 1−µ
(N+2)λ1

and the implied learning rule for ṽ is

v̂T (y1; ξv) = ρλ [y1 − sign(y1)(1 + c)κσu] 1|y1|>κσu . (116)

The learning threshold κσu here ensures that v̂T takes the same sign as y1.

Now I prove that in equilibrium every arbitrageur will choose the same threshold

K∗ = max

[
κσu,

ρ(1 + c)κσu
ρ− 1

]
. (117)

Intuitively, any trader choosing Kn lower than the learning threshold κσu may take actions

to trade over the states |y1| ∈ [Kn, κσu] where she actually learns nothing under her learning

rule, i.e., v̂T = 0 for |y1| ∈ [Kn, κσu]. To exclude irrational trading when the inferred signal is

zero, the equilibrium threshold must have a lower bound κσu. On the other hand, any trader

choosing Kn lower than the intercept ρ(1+c)κσu
ρ−1

may trade against the price trend (contrarian

trading) over the states |y1| ∈
[
Kn,

ρ(1+c)κσu
ρ−1

]
. This may go against the true (fat-tail) signal

and incur losses on average. Therefore, the condition Kn ≥ max
[
κσu,

ρ(1+c)κσu
ρ−1

]
could make

arbitrageurs dedicate to the momentum trading strategy which is desirable in our fat-tail

setup. When traders choose thresholds, they actually engage in Bertrand-type competition:

each of them will keep undercutting the threshold as long as it is more profitable than the

case she follows the common threshold used by other traders. Under this competition, the

equilibrium threshold is the boundary K∗ given by Eq. (117).

Let’s first show that to use any threshold K ′ lower than K∗ cannot be an equilibrium. It

suffices to show that when everyone else uses K−n = K ′ < K∗, it is a profitable deviation for
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the n-th trader to choose Kn = K∗. We need to compare the difference of expected profits:

E [π̃z,n(ỹ1;Kn = K∗, K−n = K ′)− π̃z,n(ỹ1;Kn = K ′, K−n = K ′)|ỹ1 = y1]

= E

[{
−η
(

1

2
− λ1η(N − 2)

2(1− µ)

)
(v̂T − λ1y1)2 − η(v̂T − λ1y1)

ṽ − v̂T
2

}
1K′<|y1|<K∗

∣∣∣∣y1

]
= −η

2

[
4Θ2

N + 2
+ (v̂ − v̂T )Θ

]
1K′<|y1|<K∗ , (118)

where Θ = v̂T − λ1y1 is negative for K ′ < y1 < K∗ and positive for K ′ < −y1 < K∗.

For the case K∗ = κσu, we have v̂T = 0 but v̂ ≥ 0 for |y1| ∈ [K ′, κσu]. It means the last

expression of Θ is a parabola that opens downward and crosses the origin. Since Θ takes

the opposite sign of y1 and v̂ for K ′ < |y1| < K∗, the last expression is strictly positive for

K ′ < |y1| < K∗. Similar arguments can be applied to the case K∗ = ρ(1+c)κσu
ρ−1

. Therefore,

E [π̃z,n(ỹ1;Kn = K∗, K−n = K ′)− π̃z,n(ỹ1;Kn = K ′, K−n = K ′)] > 0 for K ′ < K∗, i.e., any

threshold less than K∗ cannot be an equilibrium threshold.

Similarly, any threshold K ′ larger than K∗ cannot be an equilibrium threshold either.

As before, it suffices to show that the deviation is profitable for any trader by just choosing

Kn = K∗ less than K ′ used by others. The payoff difference given y1 is positive as well:

E [π̃z,n(ỹ1;Kn = K∗, K−n = K ′)− π̃z,n(ỹ1;Kn = K ′, K−n = K ′)|ỹ1 = y1]

= E

[
η(v̂T − λ1y1)1K∗<|y1|<K′

[
ṽ − λ1y1

2
− λ1η(v̂T − λ1y1)

1− µ

] ∣∣∣∣y1

]
=

η

2

[
N

N + 2
Θ2 + (v̂ − v̂T )Θ

]
1K∗<|y1|<K′ > 0. (119)

It rules out any threshold larger than K∗ to be an equilibrium. So the only possible equilib-

rium choice is K∗. When every trader uses the same threshold K∗, no one will deviate.

Now look at the informed trader in this algorithmic trading game. If arbitrageurs all use

the same threshold K (which can be general), the informed trader at t = 2 will trade

X2(v, y1;K) = (1− µ)
v − λ1y1

2λ1

− sN(1− µ)(ρ− 1)

2(N + 2)

[
y1 − sign(y1)

ρ(1 + c)κσu
ρ− 1

]
1|y1|>K ,

(120)

and pick X1(v,K) that maximizes her total payoff. The price at t = 2 can be written as

p̃2 = λ1y1 + λ2

(
x2 + Z21|y1|>K + ũ2

)
=


(N+2)ṽ+2λ1y1+Nv̂T

2(N+2)
+ λ2ũ2, if |y1| > K

ṽ+λ1y1
2

+ λ2ũ2, if |y1| < K,
(121)
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Figure 12. Left: Trading profits if someone deviates from K∗. Right: Learning rule v̂T (y1).

depending on whether the arbitrageurs are triggered. The informed trader’s expected profit

in the second period is also contingent on the state of arbitrageurs:

Π2,x(v, y1;K) = E[x2(v − p̃2)|I2,x] =

 1
λ2

[
(N+2)v−Nv̂T (y1)−2λ1y1

2(N+2)

]2

, if |y1| > K

1
λ2

(
v−λ1y1

2

)2
, if |y1| < K.

(122)

Note that her expected profit in the second period is always positive because the informed

trader fully anticipates the response of arbitrageurs. The informed trader needs to determine

x1 = X1(v;K) that maximizes the total expected profit from both periods. The calculation

of her total profit, conditional on the private signal v, can be decomposed into three com-

ponents:

Πx(v, x1;K) = max
x1

E
[
Π1,x + Π2,x1|ỹ1|<K + Π2,x1|ỹ1|>K |I1,x

]
= x1(v − λ1x1) + E

[
(v − λ1(x1 + ũ1))2

4λ2

1|x1+ũ1|<K

∣∣∣∣I1,x

]
+E

[
[(N + 2)v −Nv̂T (x1 + ũ1)− 2λ1(x1 + ũ1)]2

4(N + 2)2λ2

1|x1+ũ1|>K

∣∣∣∣I1,x

]
.(123)

On one hand, the informed trader may want to trade less to avoid triggering arbitrageurs

and take full advantage of her information at t = 2. On the other hand, it is costly to hide

her private signal if it is strong. This trade-off will reflect in the relative values of Π−2,x and

Π+
2,x which are defined below. Hereafter, I set σu = 1 for convenience. By direct integration,
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one can derive their expressions:

Π−2,x(v, x1;K) ≡ E[Π2,x1|ỹ1|<K |I1,x] = E

[
(v − λ1ỹ1)2

4λ2

1|ỹ1|<K

∣∣∣∣I1,x

]
=

(1− µ)[2v − λ1(K + x1)]φ(K − x1)

4
− (1− µ)[2v + λ1(K − x1)]φ(K + x1)

4

+
(1− µ)[(v − λ1x1)2 + λ2

1]

8λ1

[
erf

(
K − x1√

2

)
+ erf

(
K + x1√

2

)]
, (124)

Π+
2,x(v, x1;K) ≡ E[Π2,x1|ỹ1|>K |I1,x]

= E

[
[(N + 2)v −Nv̂T (ỹ1)− 2λ1ỹ1]2

4(N + 2)2λ2

1|ỹ1|>K

∣∣∣∣I1,x

]
=

(1− µ)(Nρ+ 2)

4(N + 2)2
[−2Nwρλ1 − 2(N + 2)v + λ1(Nρ+ 2)(K + x1)]φ(K − x1)

+
(1− µ)(Nρ+ 2)

4(N + 2)2
[−2Nwρλ1 + 2(N + 2)v + λ1(Nρ+ 2)(K − x1)]φ(K + x1)

+
1− µ

8(N + 2)2λ1

{
[(N + 2)v +Nwρλ1 − (Nρ+ 2)λ1x1]2 + λ2

1(Nρ+ 2)2
}

erfc

(
K − x1√

2

)
+

1− µ
8(N + 2)2λ1

{
[(N + 2)v −Nwρλ1 − (Nρ+ 2)λ1x1]2 + λ2

1(Nρ+ 2)2
}

erfc

(
K + x1√

2

)
.

(125)

where w = (1+c)κσu is the horizontal intercept of v̂T (y1) and where φ(K±x) = 1√
2π
e−

(K±x)2
2

denotes the probability density function of the standard normal distribution (with σu = 1).

Taking the first derivative, dΠx
dx1

= 0, one can find the FOC for X1(v;K) = x1:

0 = v − 2λ1x1 −
(1− µ)(v − λ1x1)

4

[
erf

(
K − x1√

2

)
+ erf

(
K + x1√

2

)]
+

(1− µ)[(v − λ1K)2 + 2λ2
1]

4λ1

[φ(K + x1)− φ(K − x1)] + (1− µ)Kvφ(K + x1)

+
(1− µ)φ(K − x1)

4λ1(N + 2)2
{[Kλ1(Nρ+ 2)− (N + 2)v]2 + 2λ2

1(Nρ+ 2)2

+λ1wNρ[λ1wNρ− 2Kλ1(Nρ+ 2) + 2(N + 2)v]}

−(1− µ)φ(K + x1)

4λ1(N + 2)2
{[Kλ1(Nρ+ 2) + (N + 2)v]2 + 2λ2

1(Nρ+ 2)2

+λ1wNρ[λ1wNρ− 2Kλ1(Nρ+ 2)− 2(N + 2)v]}

−(1− µ)(Nρ+ 2)

4(N + 2)2
[(N + 2)v +Nwρλ1 − (Nρ+ 2)λ1x1]erfc

(
K − x1√

2

)
−(1− µ)(Nρ+ 2)

4(N + 2)2
[(N + 2)v −Nwρλ1 − (Nρ+ 2)λ1x1]erfc

(
K + x1√

2

)
. (126)
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This FOC equation defines the informed trader’s optimal strategy X1 = x1(v;K) at t = 1.

The unconditional expected total profit of all arbitrageurs is

Πtot
z ≡ E

[
N∑
n=1

π̃z,n(ṽ, ũ1, ũ2)

]
= E[(ṽ − p̃2)Z21|y1|>K ]. (127)

After solving x1 = X1(v;K) given any v, one can compute the conditional expected profit:

E

[
N∑
n=1

π̃z,n(ṽ, ũ1, ũ2)

∣∣∣∣ṽ = v

]
= E

[
(ṽ − λ1ỹ1 − λ2 (X2(ṽ, ỹ1) + Z2(ỹ1)))Z2(ỹ1)1|ỹ1|>K |ṽ = v

]
=

N(1− µ)

2(N + 2)2
[wλ1ρ(2Nρ+ 2−N) + (ρ− 1)((N + 2)v − λ1(Nρ+ 2)(x1 +K))]φ(K − x1)

+
N(1− µ)

2(N + 2)2
[wλ1ρ(2Nρ+ 2−N)− (ρ− 1)((N + 2)v − λ1(Nρ+ 2)(x1 −K))]φ(K + x1)

− N(1− µ)

4(N + 2)2
[(N + 2)v(ρ(w − x1) + x1) + λ1Nρ

2(1 + (w − x1)2)

−λ1ρ(N − 2)(x2
1 − wx1 + 1)− 2λ1(1 + x2

1)]erfc

(
K − x1√

2

)
+
N(1− µ)

4(N + 2)2
[(N + 2)v(ρ(w + x1)− x1)− λ1Nρ

2(1 + (w + x1)2)

+λ1ρ(N − 2)(x2
1 + wx1 + 1) + 2λ1(1 + x2

1)]erfc

(
K + x1√

2

)
, (128)

where w ≡ (1 + c)κσu and σu = 1. Finally, the unconditional total payoff to arbitrageurs is

Πtot
z = E

[
N∑
n=1

π̃z,n(ṽ, ũ1, ũ2)

]
=

∫ +∞

−∞
fL(v)E

[
N∑
n=1

π̃z,n(ṽ, ũ1, ũ2)

∣∣∣∣ṽ = v

]
dv. (129)

A.11 Proof of Corollary 3.3

Since limµ→0 c = −1 and limµ→0 ρ = 2 + 2
N

, one can derive that for the informed trader

lim
v→0

lim
µ→0

Πx = λ1 −
3λ(1 + x2

1)

8

[
erf

(
K − x1√

2

)
+ erf

(
K + x1√

2

)]
+

3λ1

4
{[φ(K − x1) + φ(K + x1)]K + [φ(K − x1)− φ(K + x1)]x1},(130)
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which only depends on x1, λ1, and K. The FOC equation in this limiting case becomes

3λ

4

[
(2 +K2) [φ(K − x1)− φ(K + x1)]− x1

(
erf

(
K − x1√

2

)
+ erf

(
K + x1√

2

))]
= 0.

(131)

Using the equilibrium threshold K∗(µ = 0) = κ with σu = 1, we can rewrite the FOC as:

x1

2 + κ2
=

φ(κ− x1)− φ(κ+ x1)

erf
(
κ−x1√

2

)
+ erf

(
κ+x1√

2

) , (132)

which may have multiple solutions: one is obviously x1 = 0 and the other two are ±∞.

As long as the informed trader trades a sufficiently large quantity x1 � κ (instead of±∞),

the probability of triggering arbitrageurs to trade is arbitrarily close to one. In the second

period, the informed trader’s optimal strategy is found to be limµ→0X2(v = 0, y1) = −y1,

which exactly offsets the total quantity traded by arbitrageurs limµ→0 Z2(y1) = y1. Thus,

the terminal position of the informed trader is x1 + x2 = −u1 which is zero on average. The

expected profit from this disruptive strategy is found to be Πx ≈ λ1σ
2
u, which is limited by

the noise trading volatility in the first period.
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